marcellus formation
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 10)

H-INDEX

12
(FIVE YEARS 1)

AAPG Bulletin ◽  
2021 ◽  
Vol 105 (9) ◽  
pp. 2093-2124
Author(s):  
Robert Jacobi ◽  
Joel Starr ◽  
Craig Eckert ◽  
Charles Mitchell ◽  
Alan Leaves

Author(s):  
Reilly M. Blocho ◽  
Richard W. Smith ◽  
Mark R. Noll

AbstractThe purpose of this study was to observe how the composition of organic matter (OM) and the extent of anoxia during deposition within the Marcellus Formation in New York varied by distance from the sediment source in eastern New York. Lipid biomarkers (n-alkanes and fatty acids) in the extractable organic component (bitumen) of the shale samples were analyzed, and proxies such as the average chain length (ACL), aquatic to terrestrial ratio (ATR) and carbon preference index (CPI) of n-alkanes were calculated. Fatty acids were relatively non-abundant due to the age of the shale bed, but n-alkane distributions revealed that the primary component of the OM was terrigenous plants. The presence of shorter n-alkane chain lengths in the samples indicated that there was also a minor component of phytoplankton and algal (marine) sourced OM. Whole rock analyses were also conducted, and cerium anomalies were calculated as a proxy for anoxia. All samples had a negative anomaly value, indicating anoxic conditions during deposition. Two samples, however, contained values close to zero and thus were determined to have suboxic conditions. Anoxia and total organic matter (TOM) did not show any spatial trends across the basin, which may be caused by varying depths within the basin during deposition. A correlation between nickel concentrations and TOM was observed and indicates that algae was the primary source of the marine OM, which supports the lipid biomarker analysis. It was determined that the kerogen type of the Marcellus Formation in New York State is type III, consistent with a methane-forming shale bed.


2020 ◽  
Vol 8 (1) ◽  
pp. B13-B33 ◽  
Author(s):  
Kathryn Tamulonis

Unconventional field development and well performance analysis encompass multiple disciplines and large data sets. Even when seismic and other data sets are not available, geologists can build geocellular models to determine factors that improve operational efficiency by incorporating well log, geosteering, stratigraphic, structural, completion, and production data. I have developed a methodology to integrate these data sets from vertical and horizontal wells to build a sequence stratigraphic and structurally framed geocellular model for an unconventional Marcellus Formation field in the Appalachian Basin, USA. The model would benefit from additional data sets to perform a rigorous investigation of performance drivers. However, the presented methodology emphasizes the value of constructing geocellular models for fields with sparse data by building a geologically detailed model in a field area without seismic and core data. I used third-order stratigraphic sequences interpreted from vertical wells and geosteering data to define model layers and then incorporate completion treating pressures and proppant delivered per stage into the model. These data were upscaled and geostatistically distributed throughout the model to visualize completion trends. Based on these results, I conclude that geologic structure and treating pressures coincide, as treating pressures increase with stage proximity to a left-lateral strike-slip fault, and completion trends vary among third-order systems tracts. Mapped completion issues are further emphasized by areas with higher model proppant values, and all treating pressure and proppant realizations for each systems tract have the greatest variance away from data points. Similar models can be built to further understand any global unconventional play, even when data are sparse, and, by doing so, geologists and engineers can (1) predict completion trends based on geology, (2) optimize efficiency in the planning and operational phases of field development, and (3) foster supportive relationships within integrated subsurface teams.


2019 ◽  
Vol 7 ◽  
Author(s):  
Alex Kayla Steullet ◽  
R. Douglas Elmore ◽  
Matt Hamilton ◽  
Gerhard Heij

Sign in / Sign up

Export Citation Format

Share Document