scholarly journals Analysis of Temperature Field in the Flow Field and the Stress Field of the Friction Plate of the Wet Clutch

Author(s):  
Jingang Liu ◽  
Ming Mu ◽  
Jianwen Chen ◽  
Quan Li
Author(s):  
Bangzhi Wu ◽  
Datong Qin ◽  
Jianjun Hu ◽  
Qing Zhang

Abstract Wet clutch is widely used in vehicle power transmission, especially in dual clutch automatic transmission. However, due to the unclear understanding of clutch temperature distribution and its influencing factors, the clutch is prone to excessive temperature rise or even wear under severe working conditions or continuous starting conditions. In this paper, the finite element model of stress field distribution of friction pair is established by considering the non-uniform fixed constraint of clamping spring and the non-uniform contact of hydraulic cylinder. Based on the inclined groove structure of the friction plate, the numerical calculation model of the flow field in the groove is established by the finite volume method. On this basis, considering the time-varying characteristics of stress distribution and cooling flow field distribution of clutch friction pairs, a numerical calculation model of clutch temperature field is established, and a multi-field coupling calculation method of clutch is proposed. The distribution of temperature field under different working conditions during clutch engagement is obtained by numerical calculation. The results show that the temperature rise of clutch depends on the target speed of the clutch driving end and the load on the driven end. The research results can provide guidance for the design and control of the clutch.


2018 ◽  
Vol 70 (2) ◽  
pp. 241-249 ◽  
Author(s):  
Tengjiao Lin ◽  
Zi-ran Tan ◽  
Ze-yin He ◽  
Hong Cao ◽  
He-sheng Lv

Purpose This paper aims to introduce the moment of inertia of the driving and driven end of the clutch into the analysis of the transient temperature field of a friction plate and studied the influencing factors on that, especially to a marine gearbox. Design/methodology/approach A three-dimensional transient heat transfer analysis model of a wet clutch friction plate used in a marine gearbox is developed, and the transient characteristics of the temperature field during engagement are analyzed with taking account of the influence factors such as the sliding friction coefficient, engaging revolving speed, moment of inertia and applied engagement pressure. Findings The paper found out that the hot spot appears on the surface of the friction plate, taking account of the effect of radial slots and spiral groove. To avoid damage to the friction plate as a result of overheating, the appropriate sliding friction coefficient, lower engaging revolving speed and reasonable selection of applied engagement pressure curve can ensure a favorable heating situation of the friction plate. The reasonable structural design for the clutch with a bigger moment of inertia of driving end and smaller moment of inertia of driven end can reduce the engaging time effectively and decrease the peak temperature of the friction plate. Originality/value This paper fulfils a method to study the transient temperature field of a wet clutch friction plate, especially used in a marine gearbox.


Author(s):  
Yi Han ◽  
Feng Liu ◽  
Xin Ran

In the production process of large-diameter seamless steel pipes, the blank heating quality before roll piercing has an important effect on whether subsequently conforming piping is produced. Obtaining accurate pipe blank heating temperature fields is the basis for establishing and optimizing a seamless pipe heating schedule. In this paper, the thermal process in a regenerative heating furnace was studied using fluent software, and the distribution laws of the flow field in the furnace and of the temperature field around the pipe blanks were obtained and verified experimentally. The heating furnace for pipe blanks was analyzed from multiple perspectives, including overall flow field, flow fields at different cross sections, and overall temperature field. It was found that the changeover process of the regenerative heating furnace caused the temperature in the upper part of the furnace to fluctuate. Under the pipe blanks, the gas flow was relatively thin, and the flow velocity was relatively low, facilitating the formation of a viscous turbulent layer and thereby inhibiting heat exchange around the pipe blanks. The mutual interference between the gas flow from burners and the return gas from the furnace tail flue led to different flow velocity directions at different positions, and such interference was relatively evident in the middle part of the furnace. A temperature “layering” phenomenon occurred between the upper and lower parts of the pipe blanks. The study in this paper has some significant usefulness for in-depth exploration of the characteristics of regenerative heating furnaces for steel pipes.


2011 ◽  
Vol 291-294 ◽  
pp. 423-427
Author(s):  
Yan Juan Jin ◽  
Xiao Chao Cui ◽  
Zhu Zhang

An inner-outer coupled cooling technology of molten steel for 1240×200mm slab continuous casting, that is to set an inner cooler—U shape pipes in the mold, is put forward in order to enhance the efficiency of transmitting heat and improve inner structure of billet. The flow status and solidification status of molten steel under coupling flow field and temperature field in inner-outer coupled cooling mold are simulated by using fluid dynamics software, and compare with those in traditional mold. It is found that setting inner cooler in the mold can make molten steel flow status even, which is favorable to floating up of the inclusion, quickening the solidification of steel liquid and improving the quality of billet.


2013 ◽  
Vol 353-356 ◽  
pp. 221-224
Author(s):  
Shuang Zhang ◽  
Chun An Tang ◽  
Lei Li ◽  
Shuai Li

Saturated frozen soil is composed of soil, unfrozen water and ice, whose subgrade deformation is due to the weakened of internal structure which coursed by damage of the materials in the process of the cycle of freezing and thawing. Considing of the heterogeneity of saturated frozen soil and the phase transition between water and ice, and using of the damage mechanics theory, thermodynamics theory, filtration mechanics theory, a constitutive model of saturated frozen soil is setted up, which is of the coupfing problem of temperature field, water field and stress field. The rationality and validity of the model is verified by the experiment. It is also provided a new method for the study of frozen soil.


2018 ◽  
Vol 35 (9) ◽  
pp. 098101
Author(s):  
Shu-Zhe Mei ◽  
Quan Wang ◽  
Mei-Lan Hao ◽  
Jian-Kai Xu ◽  
Hong-Ling Xiao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document