scholarly journals Detection of Facial Wrinkle based on Improved Maximum Curvature Points in Image Profiles

Author(s):  
Die Zhou ◽  
Shuo Zhao
2018 ◽  
Vol 8 (2) ◽  
pp. 107 ◽  
Author(s):  
Mitsuyoshi Kano ◽  
Kazuyoshi Haga ◽  
Kouji Miyazaki ◽  
Fumiyasu Ishikawa

Background: Soymilk fermented by lactobacilli and/or bifidobacteria is attracting attention due to the excellent bioavailability of its isoflavones. We investigated the effects of fermented soymilk containing high amounts of isoflavone aglycones on facial wrinkles and urinary isoflavones in postmenopausal women in a randomized, parallel-group, open-label trial. Healthy Japanese women were randomly divided into active (n = 44, mean age 56.3 ± 0.5) or control (n = 44, mean age 56.1 ± 0.5) groups, who consumed or did not consume a bottle of soymilk fermented by Bifidobacterium breve strain Yakult and Lactobacillus mali for 8 weeks. Maximum depth of wrinkles around the crow’s feet area and other wrinkle parameters were evaluated as primary and secondary endpoints respectively at weeks 0, 4, and 8 during the consumption period. Urinary isoflavone levels were determined by liquid chromatography-mass spectrometry. Results: The active group demonstrated significant improvements in the maximum depth (p=0.015) and average depth (p=0.04) of wrinkles, and significantly elevated urinary isoflavones (daidzein, genistein, and glycitein; each p < 0.001) compared with the control during the consumption period. No serious adverse effects were recorded.Conclusion: These findings suggest that fermented soymilk taken daily may improve facial wrinkles and elevate urinary isoflavones in healthy postmenopausal women.Key words: postmenopausal women; isoflavone; fermented soymilk; phytoestrogen; facial wrinkle 


Author(s):  
Tamas Szili-Torok ◽  
Jens Rump ◽  
Torsten Luther ◽  
Sing-Chien Yap

Abstract Better understanding of the lead curvature, movement and their spatial distribution may be beneficial in developing lead testing methods, guiding implantations and improving life expectancy of implanted leads. Objective The aim of this two-phase study was to develop and test a novel biplane cine-fluoroscopy-based method to evaluate input parameters for bending stress in leads based on their in vivo 3D motion using precisely determined spatial distributions of lead curvatures. Potential tensile, compressive or torque forces were not subjects of this study. Methods A method to measure lead curvature and curvature evolution was initially tested in a phantom study. In the second phase using this model 51 patients with implanted ICD leads were included. A biplane cine-fluoroscopy recording of the intracardiac region of the lead was performed. The lead centerline and its motion were reconstructed in 3D and used to define lead curvature and curvature changes. The maximum absolute curvature Cmax during a cardiac cycle, the maximum curvature amplitude Camp and the maximum curvature Cmax@amp at the location of Camp were calculated. These parameters can be used to characterize fatigue stress in a lead under cyclical bending. Results The medians of Camp and Cmax@amp were 0.18 cm−1 and 0.42 cm−1, respectively. The median location of Cmax was in the atrium whereas the median location of Camp occurred close to where the transit through the tricuspid valve can be assumed. Increased curvatures were found for higher slack grades. Conclusion Our results suggest that reconstruction of 3D ICD lead motion is feasible using biplane cine-fluoroscopy. Lead curvatures can be computed with high accuracy and the results can be implemented to improve lead design and testing.


Author(s):  
Clay S. Norrbin ◽  
Dara W. Childs

The long length of sub-sea Electric Submersible Pumps (ESPs) requires a large amount of annular seals. Loading caused by gravity and housing curvature changes the Static Equilibrium Position (SEP) of the rotor in these seals. This analysis predicts the SEP due to gravity and/or well curvature loading. The analysis also interfaces displays the rotordynamics around the SEP. A static and rotordynamic analysis is presented for a previously studied ESP model. This study differs by first finding the SEP and then performing a rotordynamic analysis about the SEP. Predictions are shown in a horizontal and a vertical orientation. In these two configurations, viscosities and clearances are varied through 4 cases: 1X 1cP, 3X 1cP, 1X 30cP, and 3X 30cP. In a horizontal, straight-housing position, the model includes gravity and buoyancy on the shaft. At 1cP-1X and 1cP-3X, the horizontal statics show a moderate eccentricity ratio for the shaft with respect to the housing. With 30cP-1X, the predicted static eccentricity ratio is low at 0.08. With 30cP-3X, the predicted eccentricity ratio increases to 0.33. Predictions for a vertical case of the same model are also presented. The curvature of the housing is varied in the Y-Z plane until rub or close-to-wall rub is expected. The curvature needed for a rub with a 1X 1cP fluid is 7.5 degrees of curvature. Curvature has little impact on stability. With both 1X 30cP and 3X 30cP, the maximum curvature for a static rub are over 25 degrees of curvature. Both 1X 30cP and 3X 30cP remain unstable with increasing curvature.


2019 ◽  
Vol 26 (4) ◽  
pp. 556-564
Author(s):  
Christopher P. Cheng ◽  
Ga-Young Suh ◽  
John J. Kim ◽  
Andrew Holden

Purpose: To quantify deformations of renal arteries and snorkel stents after snorkel endovascular aneurysm sealing (Sn-EVAS) resulting from cardiac pulsatility and respiration and compare these deformations to patients with untreated abdominal aortic aneurysms (AAA) and snorkel endovascular aneurysm repair (Sn-EVAR). Materials and Methods: Ten Sn-EVAS patients (mean age 75±6 years; 8 men) were scanned with cardiac-gated, respiration-resolved computed tomography angiography. From 3-dimensional geometric models, changes in renal artery and stent angulation and curvature due to cardiac pulsatility and respiration were quantified. Respiration-induced motions were compared with those of 16 previously reported untreated AAA patients and 11 Sn-EVAR patients. Results: Renal artery bending at the stent end was greater for respiratory vs cardiac influences (6°±7° vs −1°±2°, p<0.025). Respiration caused a 3-fold greater deformation on the left renal artery as compared with the right side. Maximum curvature change was higher for respiratory vs cardiac influences (0.49±0.29 vs 0.24±0.17 cm−1, p<0.025), and snorkel renal stents experienced similar maximum curvature change due to cardiac pulsatility and respiration (0.14±0.10 vs 0.19±0.09 cm−1, p=0.142). When comparing the 3 patient cohorts for respiratory-induced deformation, there was significant renal branch angulation in untreated AAAs, but not in Sn-EVAR or Sn-EVAS, and there was significant bending at the stent end in Sn-EVAR and Sn-EVAS. Maximum curvature change due to respiration was ~10-fold greater in Sn-EVAR and Sn-EVAS compared to untreated AAAs. Conclusion: The findings suggest that cardiac and respiratory influences may challenge the mechanical durability of snorkel stents of Sn-EVAS; similarly, however, respiration may be the primary culprit for tissue irritation, increasing the risk for stent-end thrombosis, especially in the left renal artery. The bending stiffness of snorkel stents in both the Sn-EVAR and Sn-EVAS cohorts damped renal branch angulation while it intensified bending of the artery distal to the snorkel stent. Understanding these device-to-artery interactions is critical as they may affect mechanical durability of branch stents and quality and durability of treatment.


2018 ◽  
Vol 48 (5) ◽  
Author(s):  
Giovani Facco ◽  
Alberto Cargnelutti Filho ◽  
André Lavezo ◽  
Denison Esequiel Schabarum ◽  
Gabriela Görgen Chaves ◽  
...  

ABSTRACT: This study aimed to verify the influence of the basic experimental unit (BEU) size in the estimation of the optimum plot size to evaluate the fresh matter of sunn hemp (Crotalaria juncea L.) using the modified maximum curvature method. The fresh matter of sunn hemp was evaluated in uniformity trials in two sowing season in flowering. In each sowing season, 4,608 BEUs of 0.5×0.5m (0.25m2) were evaluated and 36 BEU plans were formed with sizes from 0.25 to 16m2. In each evaluation period for each BEU plan, using fresh matter data, optimum plot size was estimated through the modified maximum curvature method. Estimation of the optimum plot size depends on the BEU size. Assessing fresh matter in BEUs that are as small as possible is recommended in order to use it to estimate the optimum plot size.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Jun Cai ◽  
Bing Zhang ◽  
Bo Xu ◽  
Karen Kie Yan Chan ◽  
Gerardo Chowell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document