scholarly journals Statistical characteristics of soil water content at farmland of the Horqin Sand Land

Author(s):  
Shuxia Yao ◽  
Chuancheng Zhao ◽  
Lijuan Ye ◽  
Xinmei Zhao ◽  
Tonghui Zhang
2019 ◽  
Vol 14 (No. 4) ◽  
pp. 229-239 ◽  
Author(s):  
Xueya Zhou ◽  
Dexin Guan ◽  
Jiabing Wu ◽  
Fenghui Yuan ◽  
Anzhi Wang ◽  
...  

Soil water dynamic is considered an important process for water resource and plantation management in Horqin Sand Land, northern China. In this study, soil water content simulated by the SWMS-2D model was used to systematically analyse soil water dynamics and explore the relationship between soil water and rainfall among micro-landforms (i.e., top, upslope, midslope, toeslope, and bottomland) and 0–200 cm soil depths during the growing season of 2013 and 2015. The results showed that soil water dynamics in 0–20 cm depths were closely linked to rainfall patterns, whereas soil water content in 20–80 cm depths illustrated a slight decline in addition to fluctuations caused by rainfall. At the top position, the soil water content in different ranges of depths (20–40 and 80–200 cm) was near the wilting point, and hence some branches, and even entire plants exhibited diebacks. At the upslope or midslope positions, the soil water content in 20–80 or 80–200 cm depths was higher than at the top position. Soil water content was higher at the toeslope and bottomland positions than at other micro-landforms, and deep caliche layers had a positive feedback effect on shrub establishment. Soil water recharge by rainfall was closely related to rainfall intensity and micro-landforms. Only rainfalls &gt; 20 mm significantly increased water content in &gt; 40 cm soil depths, but deeper water recharge occurred at the toeslope position. A linear equation was fitted to the relationship between soil water and antecedent rainfall, and the slopes and R<sup>2</sup> of the equations were different among micro-landforms and soil depths. The linear equations generally fitted well in 0–20 and 20–40 cm depths at the top, upslope, midslope, and toeslope positions (R<sup>2</sup> value of about 0.60), with soil water in 0–20 cm depths showing greater responses to rainfall (average slope of 0.189). In 20–40 cm depths, the response was larger at the toeslope position, with a slope of 0.137. In 40–80 cm depths, a good linear fit with a slope of 0.041 was only recorded at the toeslope position. This study provides a soil water basis for ecological restoration in similar regions.  


2013 ◽  
Vol 361-363 ◽  
pp. 68-74
Author(s):  
Rui Ping Zhou ◽  
Yan Ru Wu

The soil water content in a region is closely related to plant growth. The coal Mining has a strong influence on the soil in Mao Wusu sand land. This study investigated the relationship between the soil water content and the collapse Degree Land of Coal Mining. Samples of the collapse land were analyzed for the soil water content in different slope locations in summer. The soil moisture changes are basically same in different slope location regardless whether it is in subsidence area or not when no rain occurs within two weeks in summer, and soil water content is relatively low in slope button, and a relative high in the other slope location, the water content in the control area and subsidence area follows from high to low by: 0a> 3a> 2a> 1a. The soil water content of the control region each layer is significantly higher than that of the subsidence region.The soil volumetric water content of the sample land on both sides of the subsidence cracks is less than that in the control land in the experimental period. The water content of relative subsidence side is higher than in the exposed side, and the water content is shown the law of the control area>light >light-exposed>medium>medium-exposed>heavy>heavy-exposed.


Author(s):  
M.C.H.Mouat Pieter Nes

Reduction in water content of a soil increased the concentration of ammonium and nitrate in solution, but had no effect on the concentration of phosphate. The corresponding reduction in the quantity of phosphate in solution caused an equivalent reduction in the response of ryegrass to applied phosphate. Keywords: soil solution, soil water content, phosphate, ryegrass, nutrition.


2010 ◽  
Vol 59 (1) ◽  
pp. 157-164 ◽  
Author(s):  
E. Tóth ◽  
Cs. Farkas

Soil biological properties and CO2emission were compared in undisturbed grass and regularly disked rows of a peach plantation. Higher nutrient content and biological activity were found in the undisturbed, grass-covered rows. Significantly higher CO2fluxes were measured in this treatment at almost all the measurement times, in all the soil water content ranges, except the one in which the volumetric soil water content was higher than 45%. The obtained results indicated that in addition to the favourable effect of soil tillage on soil aeration, regular soil disturbance reduces soil microbial activity and soil CO2emission.


Author(s):  
Justyna Szerement ◽  
Aleksandra Woszczyk ◽  
Agnieszka Szyplowska ◽  
Marcin Kafarski ◽  
Arkadiusz Lewandowski ◽  
...  

2014 ◽  
Vol 22 (3) ◽  
pp. 300-307
Author(s):  
Meijun ZHANG ◽  
Wude YANG ◽  
Meichen FENG ◽  
Yun DUAN ◽  
Mingming TANG ◽  
...  

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 549f-550
Author(s):  
Mongi Zekri ◽  
Bruce Schaffer ◽  
Stephen K. O'Hair ◽  
Roberto Nunez-Elisea ◽  
Jonathan H. Crane

In southern Florida, most tropical fruit crops between Biscayne and Everglades National Parks are irrigated at rates and frequencies based on experience and observations of tree growth and fruit yield rather than on reliable quantitative information of actual water use. This approach suggests that irrigation rates may be excessive and could lead to leaching of agricultural chemicals into the groundwater in this environmentally sensitive area. Therefore, a study is being conducted to increase water use efficiency and optimize irrigation by accurately scheduling irrigation using a very effective management tool (EnviroScan, Sentek Environmental Innovations, Pty., Kent, Australia) that continuously monitors soil water content with highly accurate capacitance multi-sensor probes installed at several depths within the soil profile. The system measures crop water use by monitoring soil water depletion rates and allows the maintenance of soil water content within the optimum range (below field capacity and well above the onset of plant water stress). The study is being conducted in growers' orchards with three tropical fruit crops (avocado, carambola, and `Tahiti' lime) to facilitate rapid adoption and utilization of research results.


Sign in / Sign up

Export Citation Format

Share Document