scholarly journals Simulation of the Effective Refractive Index of the Cladding Mode in LC-LPFG

Author(s):  
Xinrui Jiang ◽  
Huiyuan Li ◽  
Wenqi Yuan
2013 ◽  
Vol 62 (14) ◽  
pp. 140201
Author(s):  
Li Li-Jun ◽  
Lai Yong-Zheng ◽  
Cao Mao-Yong ◽  
Liu Chao ◽  
Yuan Xue-Mei ◽  
...  

2007 ◽  
Vol 21 (30) ◽  
pp. 5075-5089 ◽  
Author(s):  
HALA M. KHALIL ◽  
MOHAMMED M. SHABAT ◽  
SOFYAN A. TAYA ◽  
MAZEN M. ABADLA

In this work, we present an extensive theoretical analysis of nonlinear optical waveguide sensor. The waveguide under consideration consists of a thin dielectrica film surrounded by a self-focused nonlinear cladding and a linear substrate. The nonlinearity of the cladding is considered to be of Kerr-type. Both cases, when the effective refractive index is greater and when it is smaller than the index of the guiding layer, are discussed. The sensitivity of the effective refractive index to any change in the cladding index in evanescent optical waveguide sensor is derived for TM modes. Closed form analytical expressions and normalized charts are given to provide the conditions required for the sensor to exhibit its maximum sensitivity. The results are compared with those of the well-known linear evanescent waveguide sensors.


Nanomaterials ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 651 ◽  
Author(s):  
Ermolaev ◽  
Kushnir ◽  
Sapoletova ◽  
Napolskii

Photonic crystals based on titanium oxide are promising for optoelectronic applications, for example as components of solar cells and photodetectors. These materials attract great research attention because of the high refractive index of TiO2. One of the promising routes to prepare photonic crystals based on titanium oxide is titanium anodizing at periodically changing voltage or current. However, precise control of the photonic band gap position in anodic titania films is a challenge. To solve this problem, systematic data on the effective refractive index of the porous anodic titanium oxide are required. In this research, we determine quantitatively the dependence of the effective refractive index of porous anodic titanium oxide on the anodizing regime and develop a model which allows one to predict and, therefore, control photonic band gap position in the visible spectrum range with an accuracy better than 98.5%. The prospects of anodic titania photonic crystals implementation as refractive index sensors are demonstrated.


2021 ◽  
Vol 11 (22) ◽  
pp. 10525
Author(s):  
Da Liu ◽  
Ran Gao ◽  
Zhipei Li ◽  
Anle Qi

This paper has proposed and experimentally demonstrated an integrated Co2+-doped microfiber Bragg grating sensor (Co-MFBGS) that can measure the surrounding liquid refractive index (LRI) and liquid flow rate (LFR) simultaneously. The Co-MFBGS provides well-defined resonant modes of core and cladding in the reflection spectrum. By monitoring the wavelength of the cladding mode, the LRI can be measured; meanwhile, by monitoring the wavelength of the core mode caused by the heat exchange, the LFR can be measured. The LRI and LFR can be distinguished by the wavelength separation between cladding mode and core mode. The experimental results show that in aqueous glycerin solution, the maximum measurement sensitivity for LRI detection is −7.85 nm/RIU (refractive index unit), and the LFR sensitivity is −1.93 nm/(μL/s) at a flow rate of 0.21 μL/s.


2016 ◽  
Vol 140 ◽  
pp. 77-84 ◽  
Author(s):  
Jing Zhang ◽  
Zhifang Wu ◽  
Tianye Huang ◽  
Xuguang Shao ◽  
Ping Shum

Sign in / Sign up

Export Citation Format

Share Document