scholarly journals Technology Research and Design on The New Device of Drilling Fluid Mixing

Author(s):  
Yanguo Chen ◽  
Yurong Jiang ◽  
Yage Zhang ◽  
Xinke Yu
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Peng Yin ◽  
Yongjun Hou ◽  
Xianjin Wu

PurposeThe purpose of this paper is to obtain the combination of working parameters suitable for pulsating negative pressure shale shaker through simulation, which is conducive to efficient recovery of clean drilling fluid and relatively dry cuttings.Design/methodology/approachShale shaker is still one of the main equipment in solid–solid and solid–liquid separation processes in drilling industry. This research is based on a new drilling fluids circulation treatment device, namely pulsating negative pressure shale shaker. In this work, a numerical study of particle flow and separation in the pulsating negative pressure shale shaker is carried out by coupling computational fluid dynamics/discrete element method (CFD-DEM). The effect of vibration parameters and negative pressure parameters are studied in terms of conveyance velocity and percent through screen.FindingsThe results show that, conveyance velocity of particle is mainly affected by vibration parameters, negative pressure in pulsating form can effectively prevent cuttings from sticking to the screen. Vibration parameters and pulsating airflow velocity peak have great influence on percent through screen, while vibration frequency and screen slope have influence on the time when the percent through screen reaches stability.Originality/valueIn this paper, the authors put forward a new kind of drilling waste fluid treatment equipment, and focused on the study of particle movement law. The results have important guiding significance for the selection of structural design parameters and rational use of equipment. In addition, the new device provides a new idea for solid–liquid separation method, which is one of the hot topics in current research.


2005 ◽  
Vol 10 (1) ◽  
pp. 100-123 ◽  
Author(s):  
Monika Büscher

Video is an important new instrument for sociological research, sometimes welcomed as the ‘microscope’ of social science. It provides access to important and otherwise difficult to examine aspects of human interaction. Moreover, because video captures practice in its lived production as ‘another next first time’ (Garfinkel 2002), it makes it possible to study practical creativity - the way in which people invent new practices. In this paper, I probe the microscope metaphor through concrete examples from my work with landscape architects and computer scientists in participatory technology research and design projects.


2011 ◽  
Vol 422 ◽  
pp. 10-16
Author(s):  
Fu Hua Wang ◽  
Rui He Wang ◽  
Xue Chao Tan

With the development of deep well drilling technology, a new HTHP (High Temperature High Pressure) experimental apparatus LH-1 was developed to meet the need of research and evaluation of deep well drilling fluid. With the advanced dynamic seal technology, mechanical transmission and data sensing technology, this new apparatus has many kinds of HTHP testing functions in a body and could evaluate manifold performances at the dynamic state of high temperature and high pressure including HTHP dynamic or static filtration test, high temperature dynamic scattering test of drilling cuttings, HTHP dynamic sealing and plugging tests, ultra HTHP aging test and so on. The lab tests show that the new apparatus gains such advantages as novelty of the design, stability of the performance, accuracy and reliability of the experimental data and facility of the operation. Having overcome the defections of the old apparatuses, the new device can provide a new means of experimental researches for the evaluation of HTHP comprehensive performance of deep well drilling fluid.


2018 ◽  
Vol 780 ◽  
pp. 48-56
Author(s):  
Jin Seok Lee ◽  
Young Soo Ahn ◽  
Gi Hwan Kang ◽  
Se Ho Ahn ◽  
Jei Pil Wang

As industry enters into high-tech society, the use of fossil energies is increasing. The demand of solar photovoltaic cell is increasing and according to this increase, the amount of waste photovoltaic cell will increase, too. However, compared to the increase of photovoltaic facility and technology, research about recycling method of waste photovoltaic cell is slow. Therefore, this study continued research to collect cooper and tin which are valuable metals from cooper ribbon electrode recovered from waste photovoltaic electrode. To effectively separate the coating layer when handling bulk of cooper ribbon electrode, heat treating furnace of hydrodynamic vibrating is developed and tin and cooper which are valuable metals are collected by using Hydro-metallurgical process used with nitric acid. The purity of cooper’s basic materials after heat treatment of hydrodynamic vibrating was 98.88wt.% and the purity of tin and cooper collected from the coating layer was measured as 98.07wt.% and 98.44wt.% each.


Sign in / Sign up

Export Citation Format

Share Document