Study on Multi-Functional Experimental Apparatus for the Performance Evaluation of HTHP Drilling Fluid

2011 ◽  
Vol 422 ◽  
pp. 10-16
Author(s):  
Fu Hua Wang ◽  
Rui He Wang ◽  
Xue Chao Tan

With the development of deep well drilling technology, a new HTHP (High Temperature High Pressure) experimental apparatus LH-1 was developed to meet the need of research and evaluation of deep well drilling fluid. With the advanced dynamic seal technology, mechanical transmission and data sensing technology, this new apparatus has many kinds of HTHP testing functions in a body and could evaluate manifold performances at the dynamic state of high temperature and high pressure including HTHP dynamic or static filtration test, high temperature dynamic scattering test of drilling cuttings, HTHP dynamic sealing and plugging tests, ultra HTHP aging test and so on. The lab tests show that the new apparatus gains such advantages as novelty of the design, stability of the performance, accuracy and reliability of the experimental data and facility of the operation. Having overcome the defections of the old apparatuses, the new device can provide a new means of experimental researches for the evaluation of HTHP comprehensive performance of deep well drilling fluid.

2013 ◽  
Vol 753-755 ◽  
pp. 130-133
Author(s):  
Hui Hong Luo ◽  
Ze Hua Wang ◽  
Yu Xue Sun ◽  
Han Jiang

Focus on the high temperature rheological stability and the fluid loss control of resistance to high temperature drilling fluid system, further determine system formula and the formula of the high temperature drilling fluid system should be optimized. Eventually, a kind of organo-silica drilling fluid system of excellent performance which is resistant to high temperature of 220 degrees has been developed, and the system performances have been evaluated. The high temperature-resistant organo-silica drilling fluid system is of good shale inhibition, lubricity and borehole stability. The fluid loss is low and the filter cake is thin and tight, which can effectively prevent bit balling. The sand-carrying ability is good and the rheological property is easy to control. The performances of drilling fluid remain stable under high salinity and the system can resist the pollution of 6%NaCl and 0.5%CaC12. The materials used in this system are non-toxic, non-fluorescent and suitable for deep well drilling.


2013 ◽  
Vol 316-317 ◽  
pp. 860-866
Author(s):  
Yan Jun Li ◽  
Xiang Nan He ◽  
Xiao Wei Feng ◽  
Ya Qi Zhang ◽  
Ling Wu ◽  
...  

Well control safe is the prerequisite of safety drilling, especially for high temperature and high pressure horizontal wells. However, there are few papers about well control of horizontal well drilling, which mostly learn from vertical well control process. By means of analysis of the theory of gas kick, we conclude that underbalance, the bottom hole pressure is less than the formation pressure is the main means of gas invasion. During balance period, the gas also intrudes into wellbore through the way of direct invasion, diffusion invasion and replacement invasion, but the amount of gas kick is less, so the risk of well control is small. This paper also anlyses the kick tolerance, the kick tolerance decreases with the increasing of drilling fluid density when the formation pressure and drilling equipment is constant.


2021 ◽  
Author(s):  
Lei Wang ◽  
Jin Yang ◽  
Zhengkang Li ◽  
Xinyue He ◽  
Lei Li ◽  
...  

Abstract With the strengthening of exploration and development of deep strata and offshore oil and gas resources, more and more deep wells and deep-water wells have put forward higher requirements for drilling fluid performance. The high-temperature high-pressure of deep well and the low temperature environment of deep well have important influence on the rheology and density of drilling fluid. A new method for calculating the rheology and density of high -temperature high-pressure (HTHP) drilling fluid is proposed and studied in this paper. In this paper, the HTHP rheological data are used to predict the shear stress under different shear rates, and then the wellbore rheological parameters are predicted and analyzed. For the calculation of drilling fluid density, the classical component method static density calculation model established by Hoberock model based on drilling fluid components is analyzed and improved in this paper. The obtained model predicts that the maximum absolute error of drilling fluid density under different temperature and pressure is 0.02 g/cm3, and the absolute error is controlled within 2 %.


2021 ◽  
Vol 66 (05) ◽  
pp. 192-195
Author(s):  
Rövşən Azər oğlu İsmayılov ◽  

The aricle is about the pipe stick problems of deep well drilling. Pipe stick problem is one of the drilling problems. There are two types of pipe stick problems exist. One of them is differential pressure pipe sticking. Another one of them is mechanical pipe sticking. There are a lot of reasons for pipe stick problems. Indigators of differential pressure sticking are increase in torque and drug forces, inability to reciprocate drill string and uninterrupted drilling fluid circulation. Key words: pipe stick, mecanical pipe stick,difference of pressure, drill pipe, drilling mud, bottomhole pressure, formation pressure


SPE Journal ◽  
2018 ◽  
Vol 24 (05) ◽  
pp. 2033-2046 ◽  
Author(s):  
Hu Jia ◽  
Yao–Xi Hu ◽  
Shan–Jie Zhao ◽  
Jin–Zhou Zhao

Summary Many oil and gas resources in deep–sea environments worldwide are often located in high–temperature/high–pressure (HT/HP) and low–permeability reservoirs. The reservoir–pressure coefficient usually exceeds 1.6, with formation temperature greater than 180°C. Challenges are faced for well drilling and completion in these HT/HP reservoirs. A solid–free well–completion fluid with safety density greater than 1.8 g/cm3 and excellent thermal endurance is strongly needed in the industry. Because of high cost and/or corrosion and toxicity problems, the application of available solid–free well–completion fluids such as cesium formate brines, bromine brines, and zinc brines is limited in some cases. In this paper, novel potassium–based phosphate well–completion fluids were developed. Results show that the fluid can reach the maximum density of 1.815 g/cm3 at room temperature, which makes a breakthrough on the density limit of normal potassium–based phosphate brine. The corrosion rate of N80 steel after the interaction with the target phosphate brine at a high temperature of 180°C is approximately 0.1853 mm/a, and the regained–permeability recovery of the treated sand core can reach up to 86.51%. Scanning–electron–microscope (SEM) pictures also support the corrosion–evaluation results. The phosphate brine shows favorable compatibility with the formation water. The biological toxicity–determination result reveals that it is only slightly toxic and is environmentally acceptable. In addition, phosphate brine is highly effective in inhibiting the performance of clay minerals. The cost of phosphate brine is approximately 44 to 66% less than that of conventional cesium formate, bromine brine, and zinc brine. This study suggests that the phosphate brine can serve as an alternative high–density solid–free well–completion fluid during well drilling and completion in HT/HP reservoirs.


1998 ◽  
Author(s):  
MingLiang Zhu ◽  
ShengQi Wang ◽  
Yuncai Mao ◽  
Jie Dong

Sign in / Sign up

Export Citation Format

Share Document