Sensors ◽  
2019 ◽  
Vol 19 (15) ◽  
pp. 3413 ◽  
Author(s):  
Pengcheng Zhao ◽  
Jingang Wang ◽  
Qian Wang ◽  
Qianbo Xiao ◽  
Ruiqiang Zhang ◽  
...  

Accurate measurement of overvoltage in power grids is of great significance to study the characteristics of overvoltage and design of insulation coordination. Based on the research of D-dot voltage sensor, we designed a Dual-Differential D-dot overvoltage sensor. In order to quantify the structural parameters of the sensor, improve the performance and measurement accuracy of the sensor. The Field-Circuit Coupling method was proposed to be used in the parameter design of D-dot overvoltage sensor. The joint simulation of space electromagnetic field model and equivalent circuit model of the Dual-Differential D-dot overvoltage sensor was established with the finite element simulation software Ansoft Maxwell and circuit simulation software Simplorer. Finally, the actual sensor was manufactured. A test platform was built to verify the steady-state and transient performance of the sensor. The results show that the Dual-Differential D-dot sensor has excellent steady-state and transient performance, the error of phase and amplitude are small, and the sensor can achieve the non-contact measurement of power transmission line. Simultaneously, the rationality of the Field-Circuit Coupling method was further verified.


Author(s):  
D.V. Ozerkin ◽  
V.O. Bondarenko

The paper considers a promising temperature control method for electronic equipment, that is, microthermostatting, which is characterised by maintaining a stable temperature in specific electric and radio devices. We show that the temperature error equation may be the most universal mathematical model for developing microthermostatted electronics. Statistical analysis methods concerning operation modes of an electronic circuit used in a device make it possible to obtain a regression model that forms the basis for deriving the temperature error equation. We propose to replace a physical factorial experiment with a numerical factorial experiment in order to reduce the time spent performing the statistical analysis. We note that it may be possible to implement this numerical factorial experiment using well-known circuit simulation software packages. The general form of the temperature error equation enables us to conclude that in the process of investigating the thermal stability of an electronic device there arise three subproblems: 1) the problem of synthesising fitting mathematical models for the electric and radio equipment; 2) the circuit modelling problem regarding the circuit used; 3) the topology design problem for computing the temperature field. In the experimental part of our investigation, we propose a simple design for a heater microthermostat in a voltage regulator. A feature of the microthermostat design is a microcontroller to form corrective actions affecting the actuators. In our studies we compared two voltage regulator designs: 1) without thermostatting; 2) using microthermostatting. We show that the thermostatted option displays thermal stability that is 2.68 times higher than that of the basic option


2006 ◽  
Vol 129 (3) ◽  
pp. 283-290 ◽  
Author(s):  
Diego Martín ◽  
Carlos Algora ◽  
Victoria Corregidor ◽  
Alejandro Datas

In comparison to conventional solar photovoltaics, where sun radiation is converted into electricity directly by solar cells, solar thermophotovoltaic (STPV) conversion has some specific advantages. These advantages come from the fact that in thermophotovoltaics the photon radiator is always inside the conversion system and near the photovoltaic cells. For these reasons we are developing small prototypes with sun heated emitters and photoreceiver arrays to be installed inside complete STPV systems. In order to achieve these complete STPV systems, the first step is to determine the optimum way of packaging the TPV cells into STPV arrays, choosing the best series/parallel configurations depending on the TPV cell band gap, the size of arrays, and the materials. This is the goal of this paper. To carry out the calculations, 18 and 24 cell arrays have been connected following different series and parallel configurations, using the PSPICE commercial circuit-simulation software. Each TPV cell is simulated as a block consisting of the well-known photogenerated current source, two dark diodes of ideality factors equal to one and two, and two resistances, one in parallel and the other in series. As a result, recommendations about the size and front grid design of the GaSb cells are obtained. When the optimally designed cells are connected to be included in two specific systems, recommendations about the best parallel/series connection are achieved. Evaluation on the performance of the arrays at nonuniform illumination is also carried out. The first photoreceiver arrays are being constructed and implemented in real STPV systems following these recommendations.


2012 ◽  
Vol 2012 ◽  
pp. 1-4 ◽  
Author(s):  
Harish Kumar ◽  
MD. Upadhayay

UWB technology- (operating in broad frequency range of 3.1–10.6 GHz) based filter with WLAN notch has shown great achievement for high-speed wireless communications. To satisfy the UWB system requirements, a band pass filter with a broad pass band width, low insertion loss, and high stop-band suppression are needed. UWB filter with wireless local area network (WLAN) notch at 5.6 GHz and 3 dB fractional bandwidth of 109.5% using a microstrip structure is presented. Initially a two-transmission-pole UWB band pass filter in the frequency range 3.1–10.6 GHz is achieved by designing a parallel-coupled microstrip line with defective ground plane structure using GML 1000 substrate with specifications: dielectric constant 3.2 and thickness 0.762 mm at centre frequency 6.85 GHz. In this structure aλ/4 open-circuited stub is introduced to achieve the notch at 5.6 GHz to avoid the interference with WLAN frequency which lies in the desired UWB band. The design structure was simulated on electromagnetic circuit simulation software and fabricated by microwave integrated circuit technique. The measured VNA results show the close agreement with simulated results.


Sign in / Sign up

Export Citation Format

Share Document