scholarly journals Research on Prediction Method of Life Cycle of Nuclear Power Equipment Based on Fuzzy Clustering

Author(s):  
Fu Chunliang ◽  
Wu Rongjun ◽  
Gong Linhua ◽  
Lin Jiangjing
2014 ◽  
Vol 83 (4) ◽  
pp. 270-274 ◽  
Author(s):  
Masashi KAMEYAMA

2018 ◽  
Vol 1074 ◽  
pp. 012153
Author(s):  
Jie Yang ◽  
Liang Yuan ◽  
Lin Su ◽  
Qiang Qin ◽  
Rudong Wang

Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 80 ◽  
Author(s):  
Ricardo Ramírez-Villegas ◽  
Ola Eriksson ◽  
Thomas Olofsson

The aim of this study is to assess how the use of fossil and nuclear power in different renovation scenarios affects the environmental impacts of a multi-family dwelling in Sweden, and how changes in the electricity production with different energy carriers affect the environmental impact. In line with the Paris Agreement, the European Union has set an agenda to reduce greenhouse gas emissions by means of energy efficiency in buildings. It is estimated that by the year 2050, 80% of Europe’s population will be living in buildings that already exist. This means it is important for the European Union to renovate buildings to improve energy efficiency. In this study, eight renovation scenarios, using six different Northern European electricity mixes, were analyzed using the standard of the European Committee for Standardization for life cycle assessment of buildings. This study covers all life cycle steps from cradle to grave. The renovation scenarios include combinations of photovoltaics, geothermal heat pumps, heat recovery ventilation, and improvement of the building envelope. The results show that while in some electricity mixes a reduction in the global warming potential can be achieved, it can be at the expense of an increase in radioactive waste production, and, in mixes with a high share of fossil fuels, the global warming potential of the scenarios increases with time, compared with that of the original building. It also shows that in most electricity mixes, scenarios that reduce the active heat demand of the building end up in reducing both the global warming potential and radioactive waste, making them less sensitive to changes in the energy system.


Author(s):  
Zhibin Lin ◽  
Hongli Gao ◽  
Erqing Zhang ◽  
Weiqing Cao ◽  
Kesi Li

Reliable remaining useful life (RUL) prediction of industrial equipment key components is of considerable importance in condition-based maintenance to avoid catastrophic failure, promote reliability and reduce cost during the production. Diamond-coated mechanical seal is one of the most critical wearing components in petroleum chemical, nuclear power and other process industries. Estimating the RUL is of critical importance. We consider the data-driven approaches for diamond-coated mechanical seal RUL estimation based on AE sensor data, since it is difficult to construct an explicit mathematical degradation model of seal. The challenges of this work are dealing with the noisy AE sensor data and modeling the degradation process with fluctuation. Faced with these challenges, we propose a pipeline method CDF-CNN to estimate the RUL for mechanical seal: WPD-KLD to raise the signal-to-noise ratio, novel CDF-based statistics to represent seal degradation process and CNN structure to estimate RUL. To acquire AE sensor data, several diamond-coated seals are tested from new to failure in three working conditions. Experimental results demonstrate that the proposed method can accurately predict the RUL of diamond-coated mechanical seal based on AE signals. The proposed prediction method can be generalized to other various mechanical assets.


2020 ◽  
Vol 144 ◽  
pp. 106095 ◽  
Author(s):  
Zhen-bing Cai ◽  
Zheng-yang Li ◽  
Mei-gui Yin ◽  
Min-hao Zhu ◽  
Zhong-rong Zhou

2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Yaohua Deng ◽  
Kexing Yao ◽  
Qiwen Lu

Flexible photoelectric film is an anisotropic material. The slight change of equipment performance during processing is prone to cause deformation of the material. Therefore, it is important to predict the degradation of processing equipment performance. Since the performance degradation of flexible photoelectric film material Roll-to-Roll (R2R) processing equipment is a nonlinear process, this paper introduces an adaptive fuzzy clustering method to construct a fuzzy membership function model for calculating the performance degradation index of R2R processing equipment and studies the parameter solving method such as the AFCM division of the roller vibration data, the category center value of the fuzzy membership function, and the input data division area width. Finally, the performance degradation index calculation algorithm is designed. The roller shaft accelerated life test was carried out using self-made equipment. The test data were 1000 sets. The results showed that the root mean square eigenvalues and the kurtosis eigenvalues of the roller vibration data are sensitive to the performance degradation. The equipment performance curve described by the first and second types of performance degradation indicators was very stable in the early stage. After the 800th group, the curve continued to decrease, and the change was more severe, indicating that the performance degradation of the equipment is more serious. In the 980th group, the longer-lasting roller shaft was damaged, and the performance index value was about zero, which proved the correctness of the performance degradation prediction method proposed in this paper in calculating the performance degradation value of the equipment.


Author(s):  
Steve Yang ◽  
Jun Ding ◽  
Huifang Miao ◽  
Jianxiang Zheng

All 1000 MW nuclear power plants currently in construction or projected to-be-built in China will use the digital instrumentation and control (I&C) systems. Safety and reliability are the ultimate concern for the digital I&C systems. To obtain high confidence in the safety of digital I&C systems, rigorous software verification and validation (V&V) life-cycle methodologies are necessary. The V&V life-cycle process ensures that the requirements of the system and software are correct, complete, and traceable; that the requirements at the end of each life-cycle phase fulfill the requirements imposed by the previous phase; and the final product meets the user-specified requirements. The V&V process is best illustrated via the so-called V-model. This paper describes the V-model in detail by some examples. Through the examples demonstration, it is shown that the process detailed in the V-model is consistent with the IEEE Std 1012-1998, which is endorsed by the US Regulatory Guide 1.168-2004. The examples show that the V-model process detailed in this paper provides an effective V&V approach for digital I&C systems used in nuclear power plants. Additionally, in order to obtain a qualitative mathematical description of the V-model, we study its topological structure in graph theory. This study confirms the rationality of the V-model. Finally, the V&V approach affording protection against common-cause failure from design deficiencies, and manufacturing errors is explored. We conclude that rigorous V&V activities using the V-model are creditable in reducing the risk of common-cause failures.


Sign in / Sign up

Export Citation Format

Share Document