Diamond-Coated Mechanical Seal Remaining Useful Life Prediction Based on Convolution Neural Network

Author(s):  
Zhibin Lin ◽  
Hongli Gao ◽  
Erqing Zhang ◽  
Weiqing Cao ◽  
Kesi Li

Reliable remaining useful life (RUL) prediction of industrial equipment key components is of considerable importance in condition-based maintenance to avoid catastrophic failure, promote reliability and reduce cost during the production. Diamond-coated mechanical seal is one of the most critical wearing components in petroleum chemical, nuclear power and other process industries. Estimating the RUL is of critical importance. We consider the data-driven approaches for diamond-coated mechanical seal RUL estimation based on AE sensor data, since it is difficult to construct an explicit mathematical degradation model of seal. The challenges of this work are dealing with the noisy AE sensor data and modeling the degradation process with fluctuation. Faced with these challenges, we propose a pipeline method CDF-CNN to estimate the RUL for mechanical seal: WPD-KLD to raise the signal-to-noise ratio, novel CDF-based statistics to represent seal degradation process and CNN structure to estimate RUL. To acquire AE sensor data, several diamond-coated seals are tested from new to failure in three working conditions. Experimental results demonstrate that the proposed method can accurately predict the RUL of diamond-coated mechanical seal based on AE signals. The proposed prediction method can be generalized to other various mechanical assets.

Author(s):  
Yu Zang ◽  
Wei Shangguan ◽  
Baigen Cai ◽  
Huasheng Wang ◽  
Michael. G. Pecht

Author(s):  
Yiming Guo ◽  
Hui Zhang ◽  
Zhijie Xia ◽  
Chang Dong ◽  
Zhisheng Zhang ◽  
...  

The rolling bearing is the crucial component in the rotating machinery. The degradation process monitoring and remaining useful life prediction of the bearing are necessary for the condition-based maintenance. The commonly used deep learning methods use the raw or processed time domain data as the input. However, the feature extracted by these approaches is insufficient and incomprehensive. To tackle this problem, this paper proposed an improved Deep Convolution Neural Network with the dual-channel input from the time and frequency domain in parallel. The proposed methodology consists of two stages: the incipient failure identification and the degradation process fitting. To verify the effectiveness of the method, the IEEE PHM 2012 dataset is adopted to compare the proposed method and other commonly used approaches. The results show that the improved Deep Convolution Neural Network can effectively describe the degradation process for the rolling bearing.


2021 ◽  
Vol 11 (11) ◽  
pp. 4773
Author(s):  
Qiaoping Tian ◽  
Honglei Wang

High precision and multi information prediction results of bearing remaining useful life (RUL) can effectively describe the uncertainty of bearing health state and operation state. Aiming at the problem of feature efficient extraction and RUL prediction during rolling bearings operation degradation process, through data reduction and key features mining analysis, a new feature vector based on time-frequency domain joint feature is found to describe the bearings degradation process more comprehensively. In order to keep the effective information without increasing the scale of neural network, a joint feature compression calculation method based on redefined degradation indicator (DI) was proposed to determine the input data set. By combining the temporal convolution network with the quantile regression (TCNQR) algorithm, the probability density forecasting at any time is achieved based on kernel density estimation (KDE) for the conditional distribution of predicted values. The experimental results show that the proposed method can obtain the point prediction results with smaller errors. Compared with the existing quantile regression of long short-term memory network(LSTMQR), the proposed method can construct more accurate prediction interval and probability density curve, which can effectively quantify the uncertainty of bearing running state.


AI ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 48-70
Author(s):  
Wei Ming Tan ◽  
T. Hui Teo

Prognostic techniques attempt to predict the Remaining Useful Life (RUL) of a subsystem or a component. Such techniques often use sensor data which are periodically measured and recorded into a time series data set. Such multivariate data sets form complex and non-linear inter-dependencies through recorded time steps and between sensors. Many current existing algorithms for prognostic purposes starts to explore Deep Neural Network (DNN) and its effectiveness in the field. Although Deep Learning (DL) techniques outperform the traditional prognostic algorithms, the networks are generally complex to deploy or train. This paper proposes a Multi-variable Time Series (MTS) focused approach to prognostics that implements a lightweight Convolutional Neural Network (CNN) with attention mechanism. The convolution filters work to extract the abstract temporal patterns from the multiple time series, while the attention mechanisms review the information across the time axis and select the relevant information. The results suggest that the proposed method not only produces a superior accuracy of RUL estimation but it also trains many folds faster than the reported works. The superiority of deploying the network is also demonstrated on a lightweight hardware platform by not just being much compact, but also more efficient for the resource restricted environment.


Author(s):  
Zongyi Mu ◽  
Yan Ran ◽  
Genbao Zhang ◽  
Hongwei Wang ◽  
Xin Yang

Remaining useful life (RUL) is a crucial indictor to measure the performance degradation of machine tools. It directly affects the accuracy of maintenance decision-making, thus affecting operational reliability of machine tools. Currently, most RUL prediction methods are for the parts. However, due to the interaction among the parts, even RUL of all the parts cannot reflect the real RUL of the whole machine. Therefore, an RUL prediction method for the whole machine is needed. To predict RUL of the whole machine, this paper proposes an RUL prediction method with dynamic prediction objects based on meta-action theory. Firstly, machine tools are decomposed into the meta-action unit chains (MUCs) to obtain suitable prediction objects. Secondly, the machining precision unqualified rate (MPUR) control chart is used to conduct an out of control early warning for machine tools’ performance. At last, the Markov model is introduced to determine the prediction objects in next prediction and the Wiener degradation model is established to predict RUL of machine tools. According to the practical application, feasibility and effectiveness of the method is proved.


2019 ◽  
Vol 9 (22) ◽  
pp. 4813 ◽  
Author(s):  
Hanbo Yang ◽  
Fei Zhao ◽  
Gedong Jiang ◽  
Zheng Sun ◽  
Xuesong Mei

Remaining useful life (RUL) prediction is a challenging research task in prognostics and receives extensive attention from academia to industry. This paper proposes a novel deep convolutional neural network (CNN) for RUL prediction. Unlike health indicator-based methods which require the long-term tracking of sensor data from the initial stage, the proposed network aims to utilize data from consecutive time samples at any time interval for RUL prediction. Additionally, a new kernel module for prognostics is designed where the kernels are selected automatically, which can further enhance the feature extraction ability of the network. The effectiveness of the proposed network is validated using the C-MAPSS dataset for aircraft engines provided by NASA. Compared with the state-of-the-art results on the same dataset, the prediction results demonstrate the superiority of the proposed network.


Author(s):  
Peng Ding ◽  
Hua Wang ◽  
Yongfen Dai

Diagnosing the failure or predicting the performance state of low-speed and heavy-load slewing bearings is a practical and effective method to reduce unexpected stoppage or optimize the maintenances. Many literatures focus on the performance prediction of small rolling bearings, while studies on slewing bearings' health evaluation are very rare. Among these rare studies, supervised or unsupervised data-driven models are often used alone, few researchers devote to remaining useful life (RUL) prediction using the joint application of two learning modes which could fully take diversity and complexity of slewing bearings' degradation and damage into consideration. Therefore, this paper proposes a clustering-based framework with aids of supervised models and multiple physical signals. Correlation analysis and principle component analysis (PCA)-based multiple sensitive features in time-domain are used to establish the performance recession indicators (PRIs) of torque, temperature, and vibration. Subsequently, these three indicators are divided into several parts representing different degradation periods via optimized self-organizing map (OSOM). Finally, corresponding data-driven life models of these degradation periods are generated. Experimental results indicate that multiple physical signals can effectively describe the degradation process. The proposed clustering-based framework is provided with a more accurate prediction of slewing bearings' RUL and well reflects the performance recession periods.


Author(s):  
Naipeng Li ◽  
Yaguo Lei ◽  
Nagi Gebraeel ◽  
Zhijian Wang ◽  
Xiao Cai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document