scholarly journals Research on Creative Talents Training New Model Based on Modern Vocational Art Education and Career Competitiveness

Author(s):  
Xudong Jin
Keyword(s):  
Langmuir ◽  
2004 ◽  
Vol 20 (23) ◽  
pp. 10055-10061 ◽  
Author(s):  
Kurosch Rezwan ◽  
Lorenz P. Meier ◽  
Mandana Rezwan ◽  
Janos Vörös ◽  
Marcus Textor ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Yan Jin ◽  
Wenyu Jiang ◽  
Jianlong Shao ◽  
Jin Lu

The nonlocal means filter plays an important role in image denoising. We propose in this paper an image denoising model which is a suitable improvement of the nonlocal means filter. We compare this model with the nonlocal means filter, both theoretically and experimentally. Experiment results show that this new model provides good results for image denoising. Particularly, it is better than the nonlocal means filter when we consider the denoising for natural images with high textures.


2002 ◽  
Vol 124 (3) ◽  
pp. 311-314 ◽  
Author(s):  
Irene De Paul

Thermal and productivity measurements and flow visualization experiences were performed on a real scale module of a basin type solar still, whose geometry and thermal conditions could be changed in a controlled way. The convective stage was studied with the aim of acquiring information about the nature of the medium inside it and the influence of different parameters over the productivity. Literature shows a great number of experimental and numerical works dealing with different aspects of the performance of solar stills: thermal losses, vapor losses, salt deposit on the tray, geometry, thermal inertia, etc. Few works are reported that take into account convective phenomena and the fluiddynamic characteristics of the medium inside the still. Most of these works are based on Dunkle’s and Copper’s models of the still that does not take into account the characteristics of the environment. A new physical model based on these experiments is presented.


2017 ◽  
Vol 12 (2) ◽  
pp. 339-346 ◽  
Author(s):  
Zeinab Naseri Samaghcheh ◽  
Fatemeh Abdoli ◽  
Hamid Abrishami Moghaddam ◽  
Mohammadreza Modaresi ◽  
Neda Pak

2012 ◽  
Vol 23 (S1) ◽  
pp. 129-137 ◽  
Author(s):  
Mohammad Farid ◽  
Mehdi Mohamadi HosseinAbadi ◽  
Abdolreza Yazdani-Chamzini ◽  
Siamak Haji Yakhchali ◽  
Mohammad Hossein Basiri

2021 ◽  
Author(s):  
Moez Krichen ◽  
Seifeddine Mechti

<div>We propose a new model-based testing approach which takes as input a set of requirements described in Arabic Controlled Natural Language (CNL) which is a subset of the Arabic language generated by a specific grammar. The semantics of the considered requirements is defined using the Case Grammar Theory (CTG). The requirements are translated into Transition Relations which serve as an input for test cases generation tools.</div>


2015 ◽  
Vol Vol. 17 no. 1 (Graph Theory) ◽  
Author(s):  
Mauricio Soto ◽  
Christopher Thraves-Caro

Graph Theory International audience In this document, we study the scope of the following graph model: each vertex is assigned to a box in ℝd and to a representative element that belongs to that box. Two vertices are connected by an edge if and only if its respective boxes contain the opposite representative element. We focus our study on the case where boxes (and therefore representative elements) associated to vertices are spread in ℝ. We give both, a combinatorial and an intersection characterization of the model. Based on these characterizations, we determine graph families that contain the model (e. g., boxicity 2 graphs) and others that the new model contains (e. g., rooted directed path). We also study the particular case where each representative element is the center of its respective box. In this particular case, we provide constructive representations for interval, block and outerplanar graphs. Finally, we show that the general and the particular model are not equivalent by constructing a graph family that separates the two cases.


Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2881
Author(s):  
Muath Alrammal ◽  
Munir Naveed ◽  
Georgios Tsaramirsis

The use of innovative and sophisticated malware definitions poses a serious threat to computer-based information systems. Such malware is adaptive to the existing security solutions and often works without detection. Once malware completes its malicious activity, it self-destructs and leaves no obvious signature for detection and forensic purposes. The detection of such sophisticated malware is very challenging and a non-trivial task because of the malware’s new patterns of exploiting vulnerabilities. Any security solutions require an equal level of sophistication to counter such attacks. In this paper, a novel reinforcement model based on Monte-Carlo simulation called eRBCM is explored to develop a security solution that can detect new and sophisticated network malware definitions. The new model is trained on several kinds of malware and can generalize the malware detection functionality. The model is evaluated using a benchmark set of malware. The results prove that eRBCM can identify a variety of malware with immense accuracy.


Sign in / Sign up

Export Citation Format

Share Document