scholarly journals A Low cost modelling of the variable frequency drive optimum in industrial applications

2018 ◽  
pp. 28-42 ◽  
Author(s):  
AHMED ALI ◽  
ERGUN ERÇELEBİ ERÇELEBİ
Author(s):  
Yuvraj Prajapati ◽  
Shrey Patel ◽  
Monark Shah ◽  
Raj Chokshi ◽  
Om Prakash Shukla

The aim of our project is to provide safety as well as security to people from the largest electromechanical objects which are available at home. An automatic garage door mechanism was selected as a subject of our research as it is the complex electro-chemical object at home. As technology increases day by day every households installs this automatic garage door mechanism. The major problem with the conventional garage door system was child entrapment and people are in wheelchair are also affected by the conventional garage door mechanism. We are planning to eliminate the problems which are available in the conventional garage door mechanism by providing some extra safety and security features to our automatic garage door mechanism.an automatic garage door mechanism is the combination of mechanical and electrical system in which mechanical system guides the system as well as direct the shutter movement While, electrical system is used to provide energy to mechanical part. Sectional overhead doors have become the standard door type for garages. Our motive behind this study is to increase the safety and security of the automatic garage doors as well as make it to operatable at variable speed. Safety of the equipment is going to be increased by an area presence sensor which will reduce the child entrapment cases. Only authorized people can access the garage, that will increase the security and use of the VFD-variable frequency drive will make the garage door operatable at owner desired working speed. These shutters can be used for home applications as well as industrial applications.


Induction motor loss separation and efficiency measurement needs loading dynamometers and other tools as like variable voltage sinusoidal power supply. These are costly and not always usable except though a loading tool is usable. Variable frequency drives are also commonly utilized for running induction machinery and are readily accessible and low cost. Nevertheless, their usage in lieu of a constant frequency sinusoidal power supply to calculate system performance precisely is interesting, but potentially difficult because of the PWM output voltage. This paper provides few studies into the usage of variable frequency drives. The usage of the machine, the measurement criterion and the protocols shall be reported and addressed. The output presented describes the possibility of the suggested idea of calculating machine effectiveness with a PWM power source.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1301
Author(s):  
Federico Cavedo ◽  
Parisa Esmaili ◽  
Michele Norgia

A low-cost optical reflectivity sensor is proposed in this paper, able to detect the presence of objects or surface optical properties variations, at a distance of up to 20 m. A collimated laser beam is pulsed at 10 kHz, and a synchronous digital detector coherently measures the back-diffused light collected through a 1-inch biconvex lens. The sensor is a cost-effective solution for punctual measurement of the surface reflection at different distances. To enhance the interference immunity, an algorithm based on a double-side digital baseline restorer is proposed and implemented to accurately detect the amplitude of the reflected light. As results show, the sensor is robust against ambient light and shows a strong sensitivity on a wide reflection range. The capability of the proposed sensor was evaluated experimentally for object detection and recognition, in addition to dedicated measurement systems, like remote encoders or keyphasors, realized far from the object to be measured.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2299
Author(s):  
Jéssica P. Silva ◽  
Alonso R. P. Ticona ◽  
Pedro R. V. Hamann ◽  
Betania F. Quirino ◽  
Eliane F. Noronha

Lignocellulosic residues are low-cost abundant feedstocks that can be used for industrial applications. However, their recalcitrance currently makes lignocellulose use limited. In natural environments, microbial communities can completely deconstruct lignocellulose by synergistic action of a set of enzymes and proteins. Microbial degradation of lignin by fungi, important lignin degraders in nature, has been intensively studied. More recently, bacteria have also been described as able to break down lignin, and to have a central role in recycling this plant polymer. Nevertheless, bacterial deconstruction of lignin has not been fully elucidated yet. Direct analysis of environmental samples using metagenomics, metatranscriptomics, and metaproteomics approaches is a powerful strategy to describe/discover enzymes, metabolic pathways, and microorganisms involved in lignin breakdown. Indeed, the use of these complementary techniques leads to a better understanding of the composition, function, and dynamics of microbial communities involved in lignin deconstruction. We focus on omics approaches and their contribution to the discovery of new enzymes and reactions that impact the development of lignin-based bioprocesses.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Guhankumar Ponnusamy ◽  
Hajar Farzaneh ◽  
Yongfeng Tong ◽  
Jenny Lawler ◽  
Zhaoyang Liu ◽  
...  

AbstractHeterogeneous catalytic ozonation is an effective approach to degrade refractory organic pollutants in water. However, ozonation catalysts with combined merits of high activity, good reusability and low cost for practical industrial applications are still rare. This study aims to develop an efficient, stable and economic ozonation catalyst for the degradation of Ibuprofen, a pharmaceutical compound frequently detected as a refractory pollutant in treated wastewaters. The novel three-dimensional network-structured catalyst, comprising of δ-MnO2 nanosheets grown on woven carbon microfibers (MnO2 nanosheets/carbon microfiber), was synthesized via a facile hydrothermal approach. Catalytic ozonation performance of Ibuprofen removal in water using the new catalyst proves a significant enhancement, where Ibuprofen removal efficiency of close to 90% was achieved with a catalyst loading of 1% (w/v). In contrast, conventional ozonation was only able to achieve 65% removal efficiency under the same operating condition. The enhanced performance with the new catalyst could be attributed to its significantly increased available surface active sites and improved mass transfer of reaction media, as a result of the special surface and structure properties of this new three-dimensional network-structured catalyst. Moreover, the new catalyst displays excellent stability and reusability for ibuprofen degradation over successive reaction cycles. The facile synthesis method and low-cost materials render the new catalyst high potential for industrial scaling up. With the combined advantages of high efficiency, high stability, and low cost, this study sheds new light for industrial applications of ozonation catalysts.


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 613-623
Author(s):  
José Manuel Sandoval-Díaz ◽  
Francisco Javier Rivera-Gálvez ◽  
Marta Fernández-García ◽  
Carlos Federico Jasso-Gastinel

AbstractIn this work, for a semicontinuous emulsion polymerization reaction, it is shown that using a redox initiation system at 40°C, substantial modifications in copolymer chain composition with conversion can be easily obtained. To test controllable trajectories for comonomer feeding, linear and parabolic profiles were chosen to get different types of chain composition variations for the 50/50 w/w styrene/n-butyl acrylate system. For the “forced composition copolymers,” the molecular weight averages and distribution were obtained by size exclusion chromatography. The composition along conversion was followed by proton nuclear magnetic resonance to determine the weight composition distribution (WCD) of the copolymer chains. Mechanodynamic (dynamic-mechanical analysis), tensile, and hardness tests exhibited consistent results depending on the WCD that outcomes from the respective feeding profile. The results confirm that this methodology is of great potential for industrial applications when looking for synergy in copolymer properties, and low-cost processes.


Author(s):  
G A Parker ◽  
Y B Sun

The work presented in this paper deals mainly with a mechatronic approach to compact disc valve design and concentrates on improvements to the disc valve electromagnetic characteristics, the diaphragm design and the dynamic performance. A novel diaphragm-disc force motor has been successfully developed incorporating a pair of permanent ring magnets. It has the advantages of low electric power consumption at the null position, dual-lane electrical structure for fail-safe operation, high control accuracy and should be competitive with existing torque motors due to its low cost and simple construction. The research involved designing and testing a prototype disc pilot valve with a dual-lane operating mode. The test results showed that the valve has satisfactory static and dynamic characteristics for industrial applications.


Sign in / Sign up

Export Citation Format

Share Document