scholarly journals A High Performance on Extemporize Yield of Horticulture Crops with Predictions based Water and Soil properties using Multivariate Analytics and Machine Learning Algorithms

Author(s):  
Sudha V ◽  
Author(s):  
Yuri Andrei Gelsleichter ◽  
Lúcia Helena Cunha dos Anjos ◽  
Elias Mendes Costa ◽  
Gabriela Valente ◽  
Paula Debiasi ◽  
...  

Visible and near-infrared reflectance (Vis–NIR) techniques are a plausible method to soil analyses. The main objective of the study was to investigate the capacity to predicting soil properties Al, Ca, K, Mg, Na, P, pH, total carbon (TC), H and N, by using different spectral (350–2500 nm) pre-treatments and machine learning algorithms such as Artificial Neural Network (ANN), Random Forest (RF), Partial Least-squares Regression (PLSR) and Cubist (CB). The 300 soil samples were sampled in the upper part of the Itatiaia National Park (INP), located in Southeastern region of Brazil. The 10 K-fold cross validation was used with the models. The best spectral pre-treatment was the Inverse of Reflectance by a Factor of 104 (IRF4) for TC with CB, giving an averaged R² among the folds of 0.85, RMSE of 1.96; and 0.67 with 0.041 respectively for H. Into the K-folds models of TC, the highest prediction had a R² of 0.95. These results are relevant for the INP management plan, and also to similar environments. The good correlation with Vis–NIR techniques can be used for remote sense monitoring, especially in areas with very restricted access such as INP.


2020 ◽  
Vol 12 (21) ◽  
pp. 3609
Author(s):  
Xinchuan Li ◽  
Juhua Luo ◽  
Xiuliang Jin ◽  
Qiaoning He ◽  
Yun Niu

Spatially continuous soil thickness data at large scales are usually not readily available and are often difficult and expensive to acquire. Various machine learning algorithms have become very popular in digital soil mapping to predict and map the spatial distribution of soil properties. Identifying the controlling environmental variables of soil thickness and selecting suitable machine learning algorithms are vitally important in modeling. In this study, 11 quantitative and four qualitative environmental variables were selected to explore the main variables that affect soil thickness. Four commonly used machine learning algorithms (multiple linear regression (MLR), support vector regression (SVR), random forest (RF), and extreme gradient boosting (XGBoost) were evaluated as individual models to separately predict and obtain a soil thickness distribution map in Henan Province, China. In addition, the two stacking ensemble models using least absolute shrinkage and selection operator (LASSO) and generalized boosted regression model (GBM) were tested and applied to build the most reliable and accurate estimation model. The results showed that variable selection was a very important part of soil thickness modeling. Topographic wetness index (TWI), slope, elevation, land use and enhanced vegetation index (EVI) were the most influential environmental variables in soil thickness modeling. Comparative results showed that the XGBoost model outperformed the MLR, RF and SVR models. Importantly, the two stacking models achieved higher performance than the single model, especially when using GBM. In terms of accuracy, the proposed stacking method explained 64.0% of the variation for soil thickness. The results of our study provide useful alternative approaches for mapping soil thickness, with potential for use with other soil properties.


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 600
Author(s):  
Gianluca Cornetta ◽  
Abdellah Touhafi

Low-cost, high-performance embedded devices are proliferating and a plethora of new platforms are available on the market. Some of them either have embedded GPUs or the possibility to be connected to external Machine Learning (ML) algorithm hardware accelerators. These enhanced hardware features enable new applications in which AI-powered smart objects can effectively and pervasively run in real-time distributed ML algorithms, shifting part of the raw data analysis and processing from cloud or edge to the device itself. In such context, Artificial Intelligence (AI) can be considered as the backbone of the next generation of Internet of the Things (IoT) devices, which will no longer merely be data collectors and forwarders, but really “smart” devices with built-in data wrangling and data analysis features that leverage lightweight machine learning algorithms to make autonomous decisions on the field. This work thoroughly reviews and analyses the most popular ML algorithms, with particular emphasis on those that are more suitable to run on resource-constrained embedded devices. In addition, several machine learning algorithms have been built on top of a custom multi-dimensional array library. The designed framework has been evaluated and its performance stressed on Raspberry Pi III- and IV-embedded computers.


2020 ◽  
Vol 245 ◽  
pp. 08016
Author(s):  
Stefano Bagnasco ◽  
Gabriele Gaetano Fronzé ◽  
Federica Legger ◽  
Stefano Lusso ◽  
Sara Vallero

In recent years, proficiency in data science and machine learning (ML) became one of the most requested skills for jobs in both industry and academy. Machine learning algorithms typically require large sets of data to train the models and extensive usage of computing resources, both for training and inference. Especially for deep learning algorithms, training performances can be dramatically improved by exploiting Graphical Processing Units (GPUs). The needed skill set for a data scientist is therefore extremely broad, and ranges from knowledge of ML models to distributed programming on heterogeneous resources. While most of the available training resources focus on ML algorithms and tools such as TensorFlow, we designed a course for doctoral students where model training is tightly coupled with underlying technologies that can be used to dynamically provision resources. Throughout the course, students have access to a dedicated cluster of computing nodes on local premises. A set of libraries and helper functions is provided to execute a parallelized ML task by automatically deploying a Spark driver and several Spark execution nodes as Docker containers. Task scheduling is managed by an orchestration layer (Kubernetes). This solution automates the delivery of the software stack required by a typical ML workflow and enables scalability by allowing the execution of ML tasks, including training, over commodity (i.e. CPUs) or high-performance (i.e. GPUs) resources distributed over different hosts across a network. The adaptation of the same model on OCCAM, the HPC facility at the University of Turin, is currently under development.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Riyad Alshammari ◽  
Noorah Atiyah ◽  
Tahani Daghistani ◽  
Abdulwahhab Alshammari

Diabetes is a salient issue and a significant health care concern for many nations. The forecast for the prevalence of diabetes is on the rise. Hence, building a prediction machine learning model to assist in the identification of diabetic patients is of great interest. This study aims to create a machine learning model that is capable of predicting diabetes with high performance. The following study used the BigML platform to train four machine learning algorithms, namely, Deepnet, Models (decision tree), Ensemble and Logistic Regression, on data sets collected from the Ministry of National Guard Hospital Affairs (MNGHA) in Saudi Arabia between the years of 2013 and 2015. The comparative evaluation criteria for the four algorithms examined included; Accuracy, Precision, Recall, F-measure and PhiCoefficient. Results show that the Deepnet algorithm achieved higher performance compared to other machine learning algorithms based on various evaluation matrices.


Sign in / Sign up

Export Citation Format

Share Document