scholarly journals Deep Learning Network Anomaly-Based Intrusion Detection Ensemble For Predictive Intelligence To Curb Malicious Connections: An Empirical Evidence

The future is always beenshaped and refocused via Sci-Tech. Info and communication technology –has continued to shape today’s society as an inevitable driving force because we are now heavily dependent on digitally transmitted and processed data. This, is consequent upon the fact that individuals and organizations are seeking improve means to process data more effectively and efficiently. We thus, propose hybrid Genetic Algorithm trained Modular Neural Network to detect network anomaly cum malicious packets. GA was used due to its flexibility cum elitist mode. MNN is used as a learning paradigm for modular learning components. Model validation return a confusion matrix with these values: TP = 50, TN = 2, FN = 5, FP = 3. These values were subsequently applied to obtain sensitivity,specificity and accuracy of model. Model portrays a sensitivity value of 93%, specificity value of 25% and an accuracy value of 89%.

2021 ◽  
pp. 1-25
Author(s):  
Kwabena Adu ◽  
Yongbin Yu ◽  
Jingye Cai ◽  
Victor Dela Tattrah ◽  
James Adu Ansere ◽  
...  

The squash function in capsule networks (CapsNets) dynamic routing is less capable of performing discrimination of non-informative capsules which leads to abnormal activation value distribution of capsules. In this paper, we propose vertical squash (VSquash) to improve the original squash by preventing the activation values of capsules in the primary capsule layer to shrink non-informative capsules, promote discriminative capsules and avoid high information sensitivity. Furthermore, a new neural network, (i) skip-connected convolutional capsule (S-CCCapsule), (ii) Integrated skip-connected convolutional capsules (ISCC) and (iii) Ensemble skip-connected convolutional capsules (ESCC) based on CapsNets are presented where the VSquash is applied in the dynamic routing. In order to achieve uniform distribution of coupling coefficient of probabilities between capsules, we use the Sigmoid function rather than Softmax function. Experiments on Guangzhou Women and Children’s Medical Center (GWCMC), Radiological Society of North America (RSNA) and Mendeley CXR Pneumonia datasets were performed to validate the effectiveness of our proposed methods. We found that our proposed methods produce better accuracy compared to other methods based on model evaluation metrics such as confusion matrix, sensitivity, specificity and Area under the curve (AUC). Our method for pneumonia detection performs better than practicing radiologists. It minimizes human error and reduces diagnosis time.


2021 ◽  
Author(s):  
Anh Nguyen ◽  
Khoa Pham ◽  
Dat Ngo ◽  
Thanh Ngo ◽  
Lam Pham

This paper provides an analysis of state-of-the-art activation functions with respect to supervised classification of deep neural network. These activation functions comprise of Rectified Linear Units (ReLU), Exponential Linear Unit (ELU), Scaled Exponential Linear Unit (SELU), Gaussian Error Linear Unit (GELU), and the Inverse Square Root Linear Unit (ISRLU). To evaluate, experiments over two deep learning network architectures integrating these activation functions are conducted. The first model, basing on Multilayer Perceptron (MLP), is evaluated with MNIST dataset to perform these activation functions.Meanwhile, the second model, likely VGGish-based architecture, is applied for Acoustic Scene Classification (ASC) Task 1A in DCASE 2018 challenge, thus evaluate whether these activation functions work well in different datasets as well as different network architectures.


2014 ◽  
Vol 951 ◽  
pp. 274-277 ◽  
Author(s):  
Xu Sheng Gan ◽  
Can Yang ◽  
Hai Long Gao

To improve the optimization design of Radial Basis Function (RBF) neural network, a RBF neural network based on a hybrid Genetic Algorithm (GA) is proposed. First the hierarchical structure and adaptive crossover probability is introduced into the traditional GA algorithm for the improvement, and then the hybrid GA algorithm is used to optimize the structure and parameters of the network. The simulation indicates that the proposed model has a good modeling performance.


Sign in / Sign up

Export Citation Format

Share Document