Radio Wave Propagation: Simulation of Free Space Propagation Path Loss

Author(s):  
Aaron Don M. Africa
2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Solomon T. Girma ◽  
Dominic B. O. Konditi ◽  
Ciira Maina

Transmission of a radio signal through a wireless radio channel is affected by refraction, diffraction and reflection, free space loss, object penetration, and absorption that corrupt the originally transmitted signal before radio wave arrives at a receiver antenna. Even though there are many factors affecting wireless radio channels, there are still a number of radio wave propagation models such as Okumura, Hata, free space model, and COST-231 to predict the received signal level at the receiver antenna. However, researchers in the field of radio wave propagation argue that there is no universally accepted propagation model to guarantee a universal recommendation. Thus, this research is aimed at determining the difference between the measured received signal levels and the received signal level calculated from the free space propagation model. System identification method has been proposed to determine this unknown difference. Measured received signal levels were collected from three randomly selected urban areas in Ethiopia using a computer, Nemo test tool, Actix software, Nokia phone, and GPS. The result from the simulations was validated against the received experimental signal level measurement taken in a different environment. From the simulation results, the mean square error (MSE) was 4.169 dB, which is much smaller than the minimum acceptable MSE value of 6 dB for good signal propagation, and 74.76% fit to the estimation data. The results clearly showed that the proposed radio wave propagation model predicts the received signal levels at 900 MHz and 1800 MHz in the study region.


Data in Brief ◽  
2018 ◽  
Vol 17 ◽  
pp. 1062-1073 ◽  
Author(s):  
Segun I. Popoola ◽  
Aderemi A. Atayero ◽  
Oghenekaro D. Arausi ◽  
Victor O. Matthews

2018 ◽  
Vol 23 (1) ◽  
pp. 41-56
Author(s):  
محمد الهذيلي ◽  
◽  
محمد الشدادي ◽  
عبدالباسط البشة ◽  
◽  
...  

2018 ◽  
Vol 7 (2.3) ◽  
pp. 26
Author(s):  
Nazabat Hussain ◽  
Asif Iqbal ◽  
Varun Jeoti

Different studies have been conducted for radio wave propagation in troposphere using different numerical modelling approaches. The most reliable approach is based on parabolic wave equation (PWE). The modelling of PWE is approached using different numerical schemes that include Split-step Fourier Transform Method (SSFM), Finite Element/Difference method and Wavelet based numerical method. The conventional Finite Element/Difference method are less accurate and/or computationally more expensive. While in comparison, split-step wavelet method (SSWM) is highly accurate and computationally very efficient. The SSWM has been previously used for modelling of PWE with smooth terrain. However, the real conditions are completely different as they contain variable terrain. The irregularities in surface of terrain have considerable influence because of reflection and diffraction on radio-wave propagation. In order to develop an effective communication system, a model that properly incorporates the reflection parameters from the variable terrain. In this research work, the SSWM is proposed for modelling of PWE for radio wave propagation over variable terrain. In SSWM, compactly supported wavelet of Daubechies 6 are used as bases. Obtained results accurately accounts the reflection from rough terrain surface and shows good agreement with SSFM.


Electronics ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 750 ◽  
Author(s):  
Ferdous Hossain ◽  
Tan Kim Geok ◽  
Tharek Abd Rahman ◽  
Mohammad Nour Hindia ◽  
Kaharudin Dimyati ◽  
...  

This article introduces an efficient analysis of indoor 4.5 GHz radio wave propagation by using a proposed three-dimensional (3-D) ray-tracing (RT) modeling and measurement. The attractive facilities of this frequency band have significantly increased in indoor radio wave communication systems. Radio propagation predictions by simulation method based on a site-specific model, such as RT is widely used to categorize radio wave channels. Although practical measurement provides accurate results, it still needs a considerable amount of resources. Hence, a computerized simulation tool would be a good solution to categorize the wireless channels. The simulation has been performed with an in-house developed software tool. Here, the 3-D shooting bouncing ray tracing (SBRT) and the proposed 3-D ray tracing simulation have been performed separately on a specific layout where the measurement is done. Several comparisons have been performed on the results of the measurement: the proposed method, and the existing SBRT method simulation with respect to received signal strength indication (RSSI) and path loss (PL). The comparative results demonstrate that the RSSI and the PL of proposed RT have better agreements with measurement than with those from the conventional SBRT outputs.


2021 ◽  
Vol 25 (Special) ◽  
pp. 1-7-1-12
Author(s):  
Baseem G. Nsaif ◽  
◽  
Adheed H. Sallomi ◽  

An accurate propagation modeling of radio waves propagation is very important task in cellular network design as it provides the detailed useful knowledge about the wireless channel environment characteristics. Theoretical or empirical RF propagation models provide the required useful information about the signal path loss and fading to evaluate the received signal level, the coverage area, and the outage probability in specific regions. This paper aimed to develop an empirical radio wave propagation model based on observations and sets of measurement data collected from different sites through drive test. These measurements are used to determine the received signal power at some locations to create an empirical radio wave propagation model that is suitable to be appropriate in cellular network accurate design and link budget prediction at the city of Baghdad.


2012 ◽  
Vol 128 ◽  
pp. 347-363 ◽  
Author(s):  
Kittisak Phaebua ◽  
Chuwong Phongcharoenpanich ◽  
Monai Krairiksh ◽  
Titipong Lertwiriyaprapa

Sign in / Sign up

Export Citation Format

Share Document