scholarly journals Wind-Waves Characteristics in the International Port of Algiers: Comparison of ALADIN and AROME’s Wind Effect

2019 ◽  
Vol 2 (3) ◽  
Author(s):  
Sara CHIKHI ◽  
Mohamed El-Amine Slimani

The sea states numerical modeling has been developed for years, it used for very varied fields such as the sizing of coastal work, the safety of navigation, the study of the stability of the beaches or the water leisure.  The spectral third-generation ocean wind-wave model WAVEWATCH III (WW3) software was adopted and developed for simulating wave propagation in the Mediterranean basin.  In this study, a more detailed study was carried out on the port of Algiers. Two different atmospheric models have been used to get the wind forcing: ALADIN (Area Limited Dynamic Adaptation Inter National Development) with an 8 km resolution. And AROME (Application to Operational Research at Meso-scale) with a 3 km resolution. The results obtained using both of the atmospheric models have been compared and analyzed.

Author(s):  
Gerbrant Van Vledder

This paper describes a hybrid method to determine the wave conditions in large harbor basins were wave propagation and local wave growth by wind are both of relevance. The method was developed to include the effects of diffraction and wind wave growth in the assessment of design wave conditions that so far cannot be computed within one wave model. The diffraction effects are computed with a phase-resolving wave penetration model, and the wind effect is computed with a phase averaged spectral wave model. The method accounts for the effect the local wind wave growth occurs on top of the penetrating wave field. To isolate the wind wave growth, two model runs are performed with the phase-average model. One run includes wind forcing, whereas in the other run wind forcing is switched off. Subtracting the results of both methods isolates the local wave growth. The method is illustrated with a hypothetical example for the Port of IJmuiden, located along the North Sea coast of the Netherlands. In addition, an overview is given of the physical processes relevant for the determination of design wave conditions in large harbor basins. The assumptions of the hybrid method are discussed and recommendations are given for further improvements.


Atmosphere ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 562 ◽  
Author(s):  
Shemer

The mechanisms governing the evolution of the wind-wave field in time and in space are not yet fully understood. Various theoretical approaches have been offered to model wind-wave generation. To examine their validity, detailed and accurate experiments under controlled conditions have to be carried out. Since it is next to impossible to get the required control of the governing parameters and to accumulate detailed data in field experiments, laboratory studies are needed. Extensive previously unavailable results on the spatial and temporal variation of wind waves accumulated in our laboratory under a variety of wind-forcing conditions and using diverse measuring techniques are reviewed. The spatial characteristics of the wind-wave field were determined using stereo video imaging. The turbulent airflow above wind waves was investigated using an X-hot film. The wave field under steady wind forcing as well as evolving from rest under impulsive loading was studied. An extensive discussion of the various aspects of wind waves is presented from a single consistent viewpoint. The advantages of the stochastic approach suggested by Phillips over the deterministic theory of wind-wave generation introduced by Miles are demonstrated. Essential differences between the spatial and the temporal analyses of wind waves’ evolution are discussed, leading to examination of the applicability of possible approaches to wind-wave modeling.


Author(s):  
G. Benassai ◽  
I. Ascione

The spectral third-generation ocean wind-wave model WAVEWATCH III (WW3), operational since January 2005 at the Department of Applied Sciences of the University “Parthenope” (Italy), was adopted for simulating wave propagation in the Gulf of Naples. The model was coupled with PSU/NCAR mesoscale model (MM5), which gives wind forcing at 1-h intervals. The model was implemented using a four-nested grid configuration covering the Mediterranean Sea until the Gulf of Naples, the inner mesh with higher resolution (1 km × 1 km). The simulated directional spectral waves were compared with APAT storm wave data recorded in winter 2000 offshore the Gulf of Naples and with wind and wave data collected by Servizio Idrografico e Mareografico offshore the mouth of river Sele in the Gulf of Salerno. The implementation of the wave model with reference to the December 2004 storm on the coastlines of the Gulf of Naples gives evidence of the need of a regional wind-wave model for this orographically complex area.


2006 ◽  
Vol 33 (11-12) ◽  
pp. 1431-1461 ◽  
Author(s):  
Hui Feng ◽  
Doug Vandemark ◽  
Yves Quilfen ◽  
Bertrand Chapron ◽  
Brian Beckley
Keyword(s):  

1990 ◽  
Vol 211 ◽  
pp. 463-495 ◽  
Author(s):  
Michael L. Banner

In reviewing the current status of our understanding of the mechanisms underlying wind-wave generation, it is apparent that existing theories and models are not applicable to situations where the sea surface is disturbed by breaking waves, and that the available experimental data on this question are sparse. In this context, this paper presents the results of a detailed study of the effects of wave breaking on the aerodynamic surface pressure distribution and consequent wave-coherent momentum flux, as well as its influence on the total wind stress.Two complementary experimental configurations were used to focus on the details and consequences of the pressure distribution over breaking waves under wind forcing. The first utilized a stationary breaking wave configuration and confirmed the presence of significant phase shifting, due to air flow separation effects, between the surface pressure and surface elevation (and slope) distributions over a range of wind speeds. The second configuration examined the pressure distribution, recorded at a fixed height above the mean water surface just above the crest level, over short mechanically triggered waves which were induced to break almost continuously under wind forcing. This allowed a very detailed comparison of the form drag for actively breaking waves and for waves of comparable steepness just prior to breaking (‘incipiently’ breaking waves). For these propagating steep-wave experiments, the pressure phase shifts and distributions closely paralleled the stationary configuration findings. Moreover, a large increase (typically 100%) in the total windstress was observed for the breaking waves, with the increase corresponding closely to the comparably enhanced form drag associated with the actively breaking waves.In addition to further elucidating some fundamental features of wind-wave interactions for very steep wind waves, this paper provides a useful data set for future model calculations of wind flow over breaking waves. The results also provide the basis for a parameterization of the wind input source function applicable for a wave field undergoing active breaking, an important result for numerical modelling of short wind waves.


Author(s):  
R. Mahmoodi ◽  
A. A. Ardalan ◽  
M. Hasanlou

Numerical simulation results of wind wave in the Caspian Sea by using wind forcing data are presented. The numerical modeling which is applied in this study is based on numerical spectral wave model which is based on Navier-Stokes equations. It solves these equations through each of mesh elements. Moreover, in this model high-resolution unstructured grid for the Caspian Sea has been used in order to reach finer accuracy. The wind forcing data are given from European Centre for Medium-Range Weather Forecasts (ECMWF). The measurement data, which are gained from Ports and Marine Organisation (PMO) of Iran, are used in order to estimate the accuracy of the model. The results have shown better accuracy in comparison with PMO simulation. Mean of the coefficient of determination (R-squared) for significant wave height in this simulation is 0.8059, though, in PMO simulation this coefficient is reported 0.7056. Better accuracy requires more measurement data and also finer resolution of bathymetry data.


Author(s):  
Fedor Gippius ◽  
Fedor Gippius ◽  
Stanislav Myslenkov ◽  
Stanislav Myslenkov ◽  
Elena Stoliarova ◽  
...  

This study is focused on the alterations and typical features of the wind wave climate of the Black Sea’s coastal waters since 1979 till nowadays. Wind wave parameters were calculated by means of the 3rd-generation numerical spectral wind wave model SWAN, which is widely used on various spatial scales – both coastal waters and open seas. Data on wind speed and direction from the NCEP CFSR reanalysis were used as forcing. The computations were performed on an unstructured computational grid with cell size depending on the distance from the shoreline. Modeling results were applied to evaluate the main characteristics of the wind wave in various coastal areas of the sea.


2011 ◽  
Vol 139 (8) ◽  
pp. 2488-2522 ◽  
Author(s):  
J. C. Dietrich ◽  
J. J. Westerink ◽  
A. B. Kennedy ◽  
J. M. Smith ◽  
R. E. Jensen ◽  
...  

AbstractHurricane Gustav (2008) made landfall in southern Louisiana on 1 September 2008 with its eye never closer than 75 km to New Orleans, but its waves and storm surge threatened to flood the city. Easterly tropical-storm-strength winds impacted the region east of the Mississippi River for 12–15 h, allowing for early surge to develop up to 3.5 m there and enter the river and the city’s navigation canals. During landfall, winds shifted from easterly to southerly, resulting in late surge development and propagation over more than 70 km of marshes on the river’s west bank, over more than 40 km of Caernarvon marsh on the east bank, and into Lake Pontchartrain to the north. Wind waves with estimated significant heights of 15 m developed in the deep Gulf of Mexico but were reduced in size once they reached the continental shelf. The barrier islands further dissipated the waves, and locally generated seas existed behind these effective breaking zones.The hardening and innovative deployment of gauges since Hurricane Katrina (2005) resulted in a wealth of measured data for Gustav. A total of 39 wind wave time histories, 362 water level time histories, and 82 high water marks were available to describe the event. Computational models—including a structured-mesh deepwater wave model (WAM) and a nearshore steady-state wave (STWAVE) model, as well as an unstructured-mesh “simulating waves nearshore” (SWAN) wave model and an advanced circulation (ADCIRC) model—resolve the region with unprecedented levels of detail, with an unstructured mesh spacing of 100–200 m in the wave-breaking zones and 20–50 m in the small-scale channels. Data-assimilated winds were applied using NOAA’s Hurricane Research Division Wind Analysis System (H*Wind) and Interactive Objective Kinematic Analysis (IOKA) procedures. Wave and surge computations from these models are validated comprehensively at the measurement locations ranging from the deep Gulf of Mexico and along the coast to the rivers and floodplains of southern Louisiana and are described and quantified within the context of the evolution of the storm.


Sign in / Sign up

Export Citation Format

Share Document