scholarly journals Assessment of wind-forcing impact on a global wind-wave model using the TOPEX altimeter

2006 ◽  
Vol 33 (11-12) ◽  
pp. 1431-1461 ◽  
Author(s):  
Hui Feng ◽  
Doug Vandemark ◽  
Yves Quilfen ◽  
Bertrand Chapron ◽  
Brian Beckley
Keyword(s):  
2019 ◽  
Vol 2 (3) ◽  
Author(s):  
Sara CHIKHI ◽  
Mohamed El-Amine Slimani

The sea states numerical modeling has been developed for years, it used for very varied fields such as the sizing of coastal work, the safety of navigation, the study of the stability of the beaches or the water leisure.  The spectral third-generation ocean wind-wave model WAVEWATCH III (WW3) software was adopted and developed for simulating wave propagation in the Mediterranean basin.  In this study, a more detailed study was carried out on the port of Algiers. Two different atmospheric models have been used to get the wind forcing: ALADIN (Area Limited Dynamic Adaptation Inter National Development) with an 8 km resolution. And AROME (Application to Operational Research at Meso-scale) with a 3 km resolution. The results obtained using both of the atmospheric models have been compared and analyzed.


Author(s):  
R. Mahmoodi ◽  
A. A. Ardalan ◽  
M. Hasanlou

Numerical simulation results of wind wave in the Caspian Sea by using wind forcing data are presented. The numerical modeling which is applied in this study is based on numerical spectral wave model which is based on Navier-Stokes equations. It solves these equations through each of mesh elements. Moreover, in this model high-resolution unstructured grid for the Caspian Sea has been used in order to reach finer accuracy. The wind forcing data are given from European Centre for Medium-Range Weather Forecasts (ECMWF). The measurement data, which are gained from Ports and Marine Organisation (PMO) of Iran, are used in order to estimate the accuracy of the model. The results have shown better accuracy in comparison with PMO simulation. Mean of the coefficient of determination (R-squared) for significant wave height in this simulation is 0.8059, though, in PMO simulation this coefficient is reported 0.7056. Better accuracy requires more measurement data and also finer resolution of bathymetry data.


Author(s):  
Gerbrant Van Vledder

This paper describes a hybrid method to determine the wave conditions in large harbor basins were wave propagation and local wave growth by wind are both of relevance. The method was developed to include the effects of diffraction and wind wave growth in the assessment of design wave conditions that so far cannot be computed within one wave model. The diffraction effects are computed with a phase-resolving wave penetration model, and the wind effect is computed with a phase averaged spectral wave model. The method accounts for the effect the local wind wave growth occurs on top of the penetrating wave field. To isolate the wind wave growth, two model runs are performed with the phase-average model. One run includes wind forcing, whereas in the other run wind forcing is switched off. Subtracting the results of both methods isolates the local wave growth. The method is illustrated with a hypothetical example for the Port of IJmuiden, located along the North Sea coast of the Netherlands. In addition, an overview is given of the physical processes relevant for the determination of design wave conditions in large harbor basins. The assumptions of the hybrid method are discussed and recommendations are given for further improvements.


Author(s):  
Fedor Gippius ◽  
Fedor Gippius ◽  
Stanislav Myslenkov ◽  
Stanislav Myslenkov ◽  
Elena Stoliarova ◽  
...  

This study is focused on the alterations and typical features of the wind wave climate of the Black Sea’s coastal waters since 1979 till nowadays. Wind wave parameters were calculated by means of the 3rd-generation numerical spectral wind wave model SWAN, which is widely used on various spatial scales – both coastal waters and open seas. Data on wind speed and direction from the NCEP CFSR reanalysis were used as forcing. The computations were performed on an unstructured computational grid with cell size depending on the distance from the shoreline. Modeling results were applied to evaluate the main characteristics of the wind wave in various coastal areas of the sea.


2011 ◽  
Vol 38 (2-3) ◽  
pp. 456-467 ◽  
Author(s):  
Tai-Wen Hsu ◽  
Jian-Ming Liau ◽  
Jaw-Guei Lin ◽  
Jinhai Zheng ◽  
Shan-Hwei Ou
Keyword(s):  

1994 ◽  
Vol 20 (4) ◽  
pp. 613-624 ◽  
Author(s):  
Stephen Clodman
Keyword(s):  

2010 ◽  
Vol 34 (8) ◽  
pp. 1984-1999 ◽  
Author(s):  
Ahmadreza Zamani ◽  
Ahmadreza Azimian ◽  
Arnold Heemink ◽  
Dimitri Solomatine

Author(s):  
Fei Duan ◽  
Zhiqiang Hu ◽  
Jin Wang

Wind power has great potential because of its clean and renewable production compared to the traditional power. Most of the present researches for floating wind turbine rely on the hydro-aero-elastic-servo simulation codes and have not been exhaustively validated yet. Thus, model tests are needed and make sense for its high credibility to master the kinetic characters of floating offshore structures. The characters of kinetic responses of the spar-type wind turbine are investigated through model test research technique. This paper describes the methodology for wind/wave model test that carried out at Deepwater Offshore Basin in Shanghai Jiao Tong University at a scale of 1:50. A Spar-type floater was selected to support the wind turbine in this test and the model blade was geometrically scaled down from the original NREL 5 MW reference wind turbine blade. The detail of the scaled model of wind turbine and the floating supporter, the test set-up configuration, the mooring system, the high-quality wind generator that can create required homogeneous and low turbulence wind, and the instrumentations to capture loads, accelerations and 6 DOF motions are described in detail, respectively. The isolated wind/wave effects and the integrated wind-wave effects on the floating wind turbine are analyzed, according to the test results.


Sign in / Sign up

Export Citation Format

Share Document