scholarly journals Mass Beach Stranding of Blue Button Jellyfishes, Porpita porpita (Linnaeus 1758) from the Coast of Mandvi, Kutch, India during August, 2021

2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Niki Shah ◽  
Yashesh Shah

Present short communication reports about beach stranding of Porpita porpita (Linnaeus 1758) from the Coast of Mandvi, Kutch during August 2021. Also, this is the first record of the blue button jellyfishes for the northern Gulf of Kutch region. A study was carried out by primary observation and measurements of common environmental parameters such as Sea Surface Temperature (SST), Wind Direction & Wind Speed. Aboral and oral parts were observed and described. It is assumed that the large biomass of blue button jellyfish on the beach is due to strong shoreward Monsoon winds.

2014 ◽  
Vol 142 (11) ◽  
pp. 4284-4307 ◽  
Author(s):  
Natalie Perlin ◽  
Simon P. de Szoeke ◽  
Dudley B. Chelton ◽  
Roger M. Samelson ◽  
Eric D. Skyllingstad ◽  
...  

Abstract The wind speed response to mesoscale SST variability is investigated over the Agulhas Return Current region of the Southern Ocean using the Weather Research and Forecasting (WRF) Model and the U.S. Navy Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) atmospheric model. The SST-induced wind response is assessed from eight simulations with different subgrid-scale vertical mixing parameterizations, validated using Quick Scatterometer (QuikSCAT) winds and satellite-based sea surface temperature (SST) observations on 0.25° grids. The satellite data produce a coupling coefficient of sU = 0.42 m s−1 °C−1 for wind to mesoscale SST perturbations. The eight model configurations produce coupling coefficients varying from 0.31 to 0.56 m s−1 °C−1. Most closely matching QuikSCAT are a WRF simulation with the Grenier–Bretherton–McCaa (GBM) boundary layer mixing scheme (sU = 0.40 m s−1 °C−1), and a COAMPS simulation with a form of Mellor–Yamada parameterization (sU = 0.38 m s−1 °C−1). Model rankings based on coupling coefficients for wind stress, or for curl and divergence of vector winds and wind stress, are similar to that based on sU. In all simulations, the atmospheric potential temperature response to local SST variations decreases gradually with height throughout the boundary layer (0–1.5 km). In contrast, the wind speed response to local SST perturbations decreases rapidly with height to near zero at 150–300 m. The simulated wind speed coupling coefficient is found to correlate well with the height-averaged turbulent eddy viscosity coefficient. The details of the vertical structure of the eddy viscosity depend on both the absolute magnitude of local SST perturbations, and the orientation of the surface wind to the SST gradient.


2000 ◽  
Vol 203 (15) ◽  
pp. 2311-2322 ◽  
Author(s):  
B. Culik ◽  
J. Hennicke ◽  
T. Martin

We satellite-tracked five Humboldt penguins during the strong 1997/98 El Nino Southern Oscillation (ENSO) from their breeding island Pan de Azucar (26 degrees 09′S, 70 degrees 40′W) in Northern Chile and related their activities at sea to satellite-derived information on sea surface temperature (SST), sea surface temperature anomaly (SSTA), wind direction and speed, chlorophyll a concentrations and statistical data on fishery landings. We found that Humboldt penguins migrated by up to 895 km as marine productivity decreased. The total daily dive duration was highly correlated with SSTA, ranging from 3.1 to 12.5 h when the water was at its warmest (+4 degrees C). Birds travelled between 2 and 116 km every day, travelling further when SSTA was highest. Diving depths (maximum 54 m), however, were not increased with respect to previous years. Two penguins migrated south and, independently of each other, located an area of high chlorophyll a concentration 150 km off the coast. Humboldt penguins seem to use day length, temperature gradients, wind direction and olfaction to adapt to changing environmental conditions and to find suitable feeding grounds. This makes Humboldt penguins biological in situ detectors of highly productive marine areas, with a potential use in the verification of trends detected by remote sensors on board satellites.


2011 ◽  
Vol 29 (2) ◽  
pp. 393-399
Author(s):  
T. I. Tarkhova ◽  
M. S. Permyakov ◽  
E. Yu. Potalova ◽  
V. I. Semykin

Abstract. Sea surface wind perturbations over sea surface temperature (SST) cold anomalies over the Kashevarov Bank (KB) of the Okhotsk Sea are analyzed using satellite (AMSR-E and QuikSCAT) data during the summer-autumn period of 2006–2009. It is shown, that frequency of cases of wind speed decreasing over a cold spot in August–September reaches up to 67%. In the cold spot center SST cold anomalies reached 10.5 °C and wind speed lowered down to ~7 m s−1 relative its value on the periphery. The wind difference between a periphery and a centre of the cold spot is proportional to SST difference with the correlations 0.5 for daily satellite passes data, 0.66 for 3-day mean data and 0.9 for monthly ones. For all types of data the coefficient of proportionality consists of ~0.3 m s−1 on 1 °C.


Respuestas ◽  
2020 ◽  
Vol 25 (3) ◽  
Author(s):  
Juan Guillermo Popayán-Hernández ◽  
Orlando Zúñiga-Escobar

This document estimated the behavior of the CO2 flux in the San Andrés Islas maritime for the first half of 2019. This behavior was established based on the thermodynamic relationship between the sea surface temperature, the partial pressures of CO2 in the atmosphere and the water column, this from data derived from remote sensors. The satellite data were derived from the MODIS aqua sensors and the MERRA model for sea surface temperature and wind speed respectively. Satellite images were obtained from NASA databases, subsequently processed and specialized in ArcGis 10.1. Finally, the behavior of the CO2 flux is shown for the San Andrés Islas maritime, finding that it does not have a tendency to capture CO2, so acidification processes are discarded for the selected study period.


Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 379 ◽  
Author(s):  
Yuka Kikuchi ◽  
Masato Fukushima ◽  
Takeshi Ishihara

In this study, offshore wind climate assessments are carried out by using mesoscale model Weather Research and Forecasting (WRF) and validated by measurement at a demonstration site located 3.1 km offshore of Choshi. An optimal nudging method is investigated by using offshore and meteorological observations. The land-use datasets are then created from a higher-resolution land-use data by using a maximum area sampling scheme according to the horizontal resolution of the mesoscale model. Finally, the sea surface temperature datasets are corrected by observation data. It is found that the relative error of annual wind speed is reduced from 7.3% to 2.2% and the correlation coefficient between predicted and measured wind speed is improved from 0.80 to 0.84 by considering the effects of land-use and sea surface temperature.


Sign in / Sign up

Export Citation Format

Share Document