scholarly journals Study of Bio-fertilizer Produced from Agro-waste (Sesame Straw) and Cow Dung Using Eisenia fetida and Perionyx sansibaricus in Arid Environment

2021 ◽  
Vol 3 (3) ◽  
Author(s):  
K. R. Panwar ◽  
G. Tripathi

In this study, an analysis of organic fertilizer of an agro-waste (Sesame straw) plus cow dung was carried out using an epigeic earthworm species Eisenia fetida and Perionyx sansibaricus. Sesame straw is abundantly produced after each harvesting of the crop in Kharif season in arid region of tropical India. The compost produced in presence and absence of earthworm exhibit significant (P<0.001) and non-significant (P>0.05) changes in physicochemical properties respectively. In control bedding, the values of water holding capacity enhanced significantly (P<0.05) by 1.28 fold, while organic carbon and C/N ratio decreased significantly (P<0.05) by 19.93% and 31.25% respectively after 60 days of composting.Working of E. fetida in the bedding material showed significant (P<0.001) difference in the level of pH, electrical conductivity, water holding capacity, organic carbon, total nitrogen, C/N ratio, available phosphorous and available potassium. After 60 days of working of P. sansibaricus, these physicochemical properties of the bedding substrate also changed significantly (P<0.001). Analysis of vermibed showed a gradual increase in electrical conductivity, water holding capacity, total nitrogen, available phosphorus and available potassium by 1.51, 1.86, 1.95, 1.78 and 1.75 fold respectively. While the values of pH, organic carbon and C/N ratio declined by 9.30%, 41.80% and 71.48% respectively within 60 days of decomposition. Thus, E. fetida and P. sansibaricus can be applied for production of organic fertilizer of sesame chaff plus cow dung to fulfill the requirement of bio-fertilizers for organic farming and agro-waste management in arid environment.

Author(s):  
Rahul Kamble

Forest is an important ecosystem service to human beings. In recent decades the forest is facing tremendous pressure from anthropogenic activities. One of the activities is the burning of forest floor for easy collection of non-timber forest produce. As a result of this number of incidences of forest fires has increased in the tribal-dominated area of the world. These forest fires have adverse impacts on soil properties which will ultimately in the long term have impacts on the forest ecosystem. Taking into consideration this fact this study was attempted to assess the impacts of controlled forest fires on the physicochemical properties of forest soil in the Gadchiroli forest circle of Central India. To assess the impacts six sampling sites from the forest where identified from the study area where no previous forest fire history was recorded in that season. Initial soil sampling before controlled forest fire was carried out in summer 2019 by quartering method in the topsoil layer (1-5 cm). A controlled forest fire was carried out in the same area. The soil was prepared for soil analysis and analysed by adopting standard methods for bulk density, water holding capacity, pH, electrical conductivity, organic carbon, and organic matter. Results revealed that forest fires increase the bulk density of soil, at 50% (n = 3) sampling locations water holding capacity got reduced down; whereas, at other half increased in capacity was observed. In the case of soil pH 66% (n = 4) sample reported increased in soil pH and at other reduction in soil pH was recorded. Except at one sampling location electrical conductivity was reduced. A similar trend was also noticed for organic carbon and organic matter. Bulk density and water holding capacity will have long term impacts; whereas, pH, electrical conductivity, organic carbon and organic matter will have short term impacts. Furthermore, in those sampling locations where forest fire does not occur in the last 2-3 years organic carbon and organic matter content of the soil is high. Thus, measures to be taken to reduce forest fires activities by incorporating an effective forest fire management system at a place by incorporating fire load management subsystem and fire suppression subsystem.  


Author(s):  
Rahul Kamble

Forest is an important ecosystem service to human beings. In recent decades the forest is facing tremendous pressure from anthropogenic activities. One of the activities is the burning of forest floor for easy collection of non-timber forest produce. As a result of this number of incidences of forest fires has increased in the tribal-dominated area of the world. These forest fires have adverse impacts on soil properties which will ultimately in the long term have impacts on the forest ecosystem. Taking into consideration this fact this study was attempted to assess the impacts of controlled forest fires on the physicochemical properties of forest soil in the Gadchiroli forest circle of Central India. To assess the impacts six sampling sites from the forest where identified from the study area where no previous forest fire history was recorded in that season. Initial soil sampling before controlled forest fire was carried out in summer 2019 by quartering method in the topsoil layer (1-5 cm). A controlled forest fire was carried out in the same area. The soil was prepared for soil analysis and analysed by adopting standard methods for bulk density, water holding capacity, pH, electrical conductivity, organic carbon, and organic matter. Results revealed that forest fires increase the bulk density of soil, at 50% (n = 3) sampling locations water holding capacity got reduced down; whereas, at other half increased in capacity was observed. In the case of soil pH 66% (n = 4) sample reported increased in soil pH and at other reduction in soil pH was recorded. Except at one sampling location electrical conductivity was reduced. A similar trend was also noticed for organic carbon and organic matter. Bulk density and water holding capacity will have long term impacts; whereas, pH, electrical conductivity, organic carbon and organic matter will have short term impacts. Furthermore, in those sampling locations where forest fire does not occur in the last 2-3 years organic carbon and organic matter content of the soil is high. Thus, measures to be taken to reduce forest fires activities by incorporating an effective forest fire management system at a place by incorporating fire load management subsystem and fire suppression subsystem.  


2017 ◽  
Vol 35 (2) ◽  
pp. 66-78 ◽  
Author(s):  
Miles Schwartz Sax ◽  
Bryant C. Scharenbroch

Abstract Conventional substrates for nursery plant production typically are soilless media that are comprised of low bulk density material with either organic or synthetic components. These mixes aim to provide a lightweight medium that provides acceptable water holding capacity and nutrient retention and create a suitable environment for root proliferation and biomass growth. In an effort to identify alternatives to traditional container substrates, a comparative amendment study was conducted to observe changes in media qualities and plant growth response of Aronia melanocarpa ‘Viking' and Acer saccharum over a period of 16 months. Materials used to amend traditional medium included composted green waste, biosolids and wood chips, biochar, aerated compost tea and vermicompost. The results of this study found that all amendments performed equally as well as control (NULL) treatments for root, shoot and total biomass production for both Aronia melanocarpa ‘Viking' and Acer saccharum. After a period of 16 months, significant changes in biochemical properties had occurred in mediums amended with biochar, wood chips, composts and biosolids. This study provides data on a variety of alternative materials that can be used as substitutes for traditional greenhouse medium in production of nursery tree stock. Index words: aerated compost tea, biochar, biosolids, carbon to nitrogen ratio, compost, dissolved organic carbon, electrical conductivity, fertilizer, microbial biomass carbon, control, active carbon, microbial respiration, leaf fluorescence, soil water tension, total nitrogen, total organic carbon, volumetric water content, wood chips, water holding capacity. Species used in this study: ‘Viking' black chokeberry [Aronia melanocarpa (Michx.) Elliott]; sugar maple (Acer saccharum Marshall).


2019 ◽  
Vol 8 (1) ◽  
pp. 6-10
Author(s):  
Andry Hammonang Sianturi ◽  
Immanuel Putra Riau Hutagaol ◽  
Bambang Trisakti ◽  
Irvan

The process of composting empty fruit bunches and Azolla microphylla by asistance active organic liquid fertilizer was an alternative in the utilization of solid waste produced from the palm oil mill. This research was to produce good quality compost from a mixture of 60%:40% weight empty fruit bunches and azolla microphylla with asistance active organic liquid fertilizer. The composting process is done by entering empty fruit bunches and Azolla microphylla on the composter and added active organic liquid fertilizer to achieve the moisture content  value of 55%-65%. During composting, the moisture content was kept on the optimum condition by adding the active organic liquid fertilizer. The parameters analyzed were temperature, moisture content, pH, water holding capacity, electrical conductivity, and C-N. The result showed that compost can be produced within ± 30 days with characteristic of pH 8.8; Moisture Content 59,92%, Water Holding Capacity 86%,  C 27.24%,  N 1.53


Meat Science ◽  
2000 ◽  
Vol 55 (4) ◽  
pp. 385-389 ◽  
Author(s):  
S Lee ◽  
J.M Norman ◽  
S Gunasekaran ◽  
R.L.J.M van Laack ◽  
B.C Kim ◽  
...  

2015 ◽  
Vol 23 (2) ◽  
pp. 995-1006 ◽  
Author(s):  
Chen Liu ◽  
Honglan Wang ◽  
Xiangyu Tang ◽  
Zhuo Guan ◽  
Brian J. Reid ◽  
...  

2015 ◽  
Vol 5 (02) ◽  
Author(s):  
Krisna Adhitya Wardana ◽  
Rina S. Soetopo ◽  
Saepulloh . ◽  
Prima Besty Asthary ◽  
Mukharomah Nur Aini

The residue from anaerobic digestion of paper mill biological sludge has the potency to be used as organic fertilizer. Physically, organic fertilizer in pellet form has smaller volume and easily stored and transported. The aim of this study is to obtain the appropriate adhesive to make fertilizer pellets from the residue from anaerobic digestion of paper mill biological sludge. The experiment were performed with two variable treatments which are the types of adhesive (sago flour, cassava starch, molasses) and the adhesive doses (0.5%, 1.0%, and 1.5%) with respectively 3 replications. The physical properties of resulting pellets were tested including yield, density, water holding capacity, and durability. The effect of pellets on plant germination and growth was also done using tomato seed. The results explained that generally, the pellets meet minimum requirements of organic fertilizers and soil conditioner according to Indonesian National Standard (SNI 7847:2012) unless Zn as micro nutrient and Regulation of the Minister of Agriculture Number 70/2011 unless water content. The pelletization of organic fertilizer to the size of 3-5 mm can be done by adding the best adhesive material, namely cassava starch 1% with the physical properties of the pellets including a yield of 99.56%, density of 1.84 g/mL, water holding capacity of 65.53%, and durability of 99.65-99.84%, but organic fertilizer pellets (with sago flour as adhesive) at a dose of 0.5 g/50 g media is the best for tomato germination and growth.Keywords: anaerobic digestion residue, organic fertilizer pellet, molasses, cassava starch, sago flourABSTRAKResidu proses digestasi anaerobik lumpur biologi industri kertas berpotensi dimanfaatkan sebagai pupuk organik. Secara fisik, pupuk organik dalam bentuk pelet lebih kecil volumenya dan lebih mudah disimpan dan diangkut. Tujuan penelitian ini adalah untuk memperoleh bahan perekat yang sesuai untuk membuat pelet pupuk organik dari residu proses digestasi anaerobik lumpur biologi industri kertas. Percobaan dilakukan dengan 2 variabel perlakuan, yaitu jenis perekat (tepung sagu, tepung kanji, molase) dan dosis perekat (0,5%; 1,0%; dan 1,5%) dengan masing-masing 3 replikasi. Pelet yang dihasilkan diuji sifat fisiknya meliputi yield, densitas, water holding capacity dan durabilitas. Percobaan pengaruh pelet berperekat terhadap perkecambahan dan pertumbuhan biji tanaman tomat juga dilakukan. Hasil penelitian menjelaskan bahwa secara umum, pelet memenuhi persyaratan minimal pupuk organik dan pembenah tanah sesuai SNI 7847:2012 kecuali Zn sebagai unsur hara mikro dan PERMENTAN No. 70 tahun 2011 kecuali kadar air. Pembuatan pelet pupuk organik dengan ukuran 3–5 mm dapat dilakukan dengan menambahkan bahan perekat terbaik, yaitu tepung kanji 1% dengan sifat fisik : yield 99,56%, densitas 1,84 g/mL, water holding capacity 65,53% dan durabilitas 99,65-99,84%, namun penggunaan pelet pupuk organik (berperekat tepung sagu) 0,5 g/50 g media untuk perkecambahan dan pertumbuhan biji tanaman tomat merupakan yang terbaik.Kata kunci: residu digestasi anaerobik, pelet pupuk organik, molase, tepung kanji, tepung sagu


2020 ◽  
Vol 10 (2) ◽  
pp. 5224-5228

An ecofriendly technique to on farm burning of biomass by making biochar from agricultural waste was provided. Characteristic studies of biomass and biochar such as SEM, Ultimate and proximate analysis, pH, Cation exchange capacity, Water holding capacity, Electrical conductivity, Soil organic matter and Dry matter production were examined. Adsorption and desorption of carbofuran in soil were studied in batch experiment mode. From the experimental studies, it was observed that pH, Cation exchange capacity, Water holding capacity, Electrical Conductivity, Soil organic content and dry matter production increases with biochar addition. Adsorption Studies show that carbofuran adsorbed with control is 0.45 mg/g whereas with 3%BC it was 6.375 mg/g and desorption studies show that with 3% biochar carbofuran desorption is less. Hence Capsicum Annuam Biochar could be one of the promising option for improving the soil health as well as for adsorbing the pesticides.


Sign in / Sign up

Export Citation Format

Share Document