scholarly journals Polyhydroxyalkanoates (PHAs), bioprocessing using waste oil

2021 ◽  
Vol 9 (1) ◽  
pp. 157-163
Author(s):  
Luka Yelwa Barde ◽  
Husseini Adamu

Pseudomonas oleovorans NCIMB 6576 and Ralstonia eutropha NCIMB 10442 were used for the production of Polyhydroxyalkanoates (PHA) from industrial waste cooking oils, the bacteria were cultured on tryptone soya broth (TSB) and Tryptone soya agar (TSA). P. oleovorans NCIMB6576 gave a better percentage PHB yield (8.2%) with PS oil as carbon source as compared to 6.45% with TS oil. However, a very low yield (0.64%) was recorded when P. oleovorans NCIMB6576 was grown on TSB without the oils as carbon source. Ralstonia eutropha NCIMB 10442 gave an appreciable yield of 13.63% and 14.80% with PS and TS oil samples respectively as carbon source with negligible variation in the yields. The results obtained across all experiments were compared with one another. The SEM images from the PHB samples generated from the experiments shows that there is a slight difference in the surface morphologies of the PHB with respect to the oil samples as well as the different bacteria used in the experiment.

2021 ◽  
Vol 9 (1) ◽  
pp. 164-171
Author(s):  
Luka YB ◽  
Hussaini Adamu

Pseudomonas oleovorans NCIMB 6576 and Ralstonia eutropha NCIMB 10442 were used for the production of Polyhydroxyalkanoates (PHA) from industrial waste cooking oils, the bacteria were cultured on tryptone soya broth (TSB) and Tryptone soya agar (TSA). The growth pattern of the bacteria, serial dilution and viable counting was done using the Miles and Misra method, 0.5ml (500 µl) of the sample was transferred aseptically into test tubes filled with 4.5ml ringer solution (1/4 strength) resulting in a ten-fold dilution, the growth curve of the cultures of P. oleovorans NCIMB6576 grown on TSB with and without PS oil sample shows error bars in the graph for each point depicting the standard error of the mean. The initial viable count ranges between 6.37 log10 cfu/ml and 5.1 log10 cfu/ml. The viable count reached its peak after 30 hours giving approximately 9.7 log10 cfu/ml for P. oleovorans NCIMB6576 with PS oil and 9.24 log10 cfu/ml after 30 hours as well without the oil, showing that maximum cell count was attained at the same time. The growth curves of P. oleovorans NCIMB6576 grown on TSB with and without the oil sample TS, where the errors bars depicts the standard errors of the means on each point. The initial viable count at the start of the experiments shows that for P. oleovorans NCIMB6576 grown with the oil, there was an initial viable count of 6.1 log10 cfu/ml as compared to 5.1 log10 cfu/ml without the oil respectively. It was observe that the time at which maximum cell counts was attained is slightly longer when the oil was not used as a carbon source (30 hours) as compared to the oil control (27 hours). A decline in cell count is also noticeable after 30 hours until it reaches its minimum value of 9.4 log.10 cfu/ml after 48 hours in the experiment involving the oil sample TS.


2014 ◽  
Vol 852 ◽  
pp. 785-788
Author(s):  
Jing Zhu ◽  
Cheng Bi Fu ◽  
Ming Zhu Sun ◽  
Wen Tao Wu

The waste cooking oils was prepared into biodiesel by transesterification. The optimum conditions are: waste oil 73 g, temperature 60°C, methanol solution25 ml, NaOH amount 1.0 g and reaction time 60 min. The properties of biodiesel are close to that of 0# diesel.


Resources ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 108 ◽  
Author(s):  
Alberto Mannu ◽  
Gina Vlahopoulou ◽  
Paolo Urgeghe ◽  
Monica Ferro ◽  
Alessandra Del Caro ◽  
...  

The chemical composition and the color of samples of waste cooking oils (WCOs) were determined prior to and after filtration on two different pads of bentonite differing in particle size. The volatile fraction was monitored by headspace solid-phase microextraction (HS-SPME) coupled with gas-chromatography, while the variation of the composition of the main components was analyzed by 1H NMR. Both techniques allowed the detection of some decomposition products, such as polymers, terpenes, and derivatives of the Maillard process. The analysis of the chemical composition prior to and after bentonite treatment revealed a tendency for the clays to retain specific chemical groups (such as carboxylic acids or double bonds), independent of their particle size. A pair comparison test was conducted in order to detect the sensory differences of the intensity of aroma between the WCO treated with the two different bentonites. In addition, characterization of the bentonite by means of powder X-ray diffraction (XRD) and thermogravimetric measurements (TG) was performed.


2022 ◽  
Vol 10 (1) ◽  
pp. 184
Author(s):  
Izumi Orita ◽  
Gento Unno ◽  
Risa Kato ◽  
Toshiaki Fukui

Methylorubrum extorquens AM1 is the attractive platform for the production of value-added products from methanol. We previously demonstrated that M. extorquens equipped with PHA synthase with broad substrate specificity synthesized polyhydroxyalkanoates (PHAs) composed of (R)-3-hydroxybutyrate and small fraction of (R)-3-hydroxyvalerate (3HV) and (R)-3-hydroxyhexanoate (3HHx) units on methanol. This study further engineered M. extorquens for biosynthesis of PHAs with higher 3HV and 3HHx composition focusing on the EMC pathway involved in C1 assimilation. The introduction of ethylmalonyl-CoA decarboxylase, catalyzing a backward reaction in the EMC pathway, aiming to increase intracellular propionyl/butyryl-CoA precursors did not affect PHA composition. Reverse b-oxidation pathway and subsequent (R)-specific hydration of 2-enoyl-CoA were then enhanced by heterologous expression of four genes derived from Ralstonia eutropha for the conversion of propionyl/butyryl-CoAs to the corresponding (R)-3-hydroxyacyl-CoA monomers. The resulting strains produced PHAs with higher 3HV and 3HHx compositions, while the methylotrophic growth was severely impaired. This growth impairment was interestingly restored by the addition of La3+ without a negative impact on PHA biosynthesis, suggesting the activation of the EMC pathway by La3+. The engineered M. extorquens synthesized PHA terpolymer composed of 5.4 mol% 3HV and 0.9% of 3HHx with 41% content from methanol as a sole carbon source in the presence of La3+.


Author(s):  
Vinoth E

Biodiesel is receiving increased attention as an alternative, non-toxic, biodegradable and renewable diesel fuel and contributes a minimum amount of net greenhouse gases, such as CO2, SO2 and NO emissions to the atmosphere. Exploring new energy resources, such as biofuel is of growing importance in recent years. The possibility of obtaining oil from plant resources has created a great importance in several countries. Vegetable oil after esterification being used as bio diesel, Considering the cost and demand of the edible oil is bearable, so it may be preferred for the preparation of bio diesel in India.  The transesterification of waste cooking oils with methanol as well as the main uses of the fatty acid methyl esters are reviewed. The general aspects of this process and the applicability of different types of catalysts (acids, alkaline metal hydroxides, alkoxides and carbonates, enzymes and non-ionic bases, such as amines, amides, and guanidine and triamino (imino) phosphoranes) are described. Transesterification is carried in a reaction cavity, once the reaction is complete, glycerine and biodiesel are gravity separated.   


Author(s):  
Muzhda Azizi ◽  
Sweeta Akbari

Nowadays, preservation of natural resources on earth is one of the most important concerns of humanity. In this regard, increasing the consumption of energy is one of the most critical challenges that humans are facing. Because, on the one hand, the untapped use of different sources of energy from fossil fuels can destroy this natural resource and, on the other hand, pollution from the use of these resources is a serious threat to the environment. Recent research suggests that affordable, sustainable and environmentally friendly fuels, which can be a good alternative to fossil fuels, have become more important. Therefore, biodiesel has made it possible to release less greenhouse gas emission and low toxicity emissions, which can partly meet fuel requirements and is the best alternative for petroleum diesel. In addition, the waste cooking oils are a major source of biodiesel for their essential compounds, such as glycerol. The use of waste cooking oils can reduce biodiesel production cost by 60 to 90 percent. Therefore, the main objective of this review is to study the production of biodiesel using transesterification reaction of waste cooking oil as an alternative fuel to petroleum diesel that can be used easily in diesel engines.


Sign in / Sign up

Export Citation Format

Share Document