Synthesis, characterization and catalytic performances of activated carbon-doped transition metals during biofuel production from waste cooking oils

2020 ◽  
Vol 306 ◽  
pp. 112749 ◽  
Author(s):  
Sadeek A. Sadeek ◽  
Eslam A. Mohammed ◽  
Mohammed Shaban ◽  
Maram T.H. Abou Kana ◽  
Nabel A. Negm
2019 ◽  
Vol 90 ◽  
pp. 01016 ◽  
Author(s):  
Nazlina Ya’aini ◽  
Arjun Pillay A/L Gopala Krishnan ◽  
Adnan Ripin

Carbon materials with high porosity and surface area such as activated carbons with a combination of metal possess great materials to obtain maximum hydrogen adsorption via the hydrogen spillover effect. The properties of activated carbon doped with metals (copper, nickel and palladium) were studied to evaluate the capacity of hydrogen sorption on the materials. Characteristics of the activated carbon doped with copper (AC-Cu), nickel (AC-Ni) and palladium (AC-Pd) were evaluated using particle density test, Fourier transform infrared spectroscopy (FTIR), x-ray diffraction (XRD) and surface and pore analysis (BET). The performance of hydrogen adsorption of the materials was carried out at different pressures of 50, 100 and 150 psi. Characterization of the materials shows that FTIR spectroscopy manage to detect surface functional groups meanwhile the carbon structure and metal content was determined using XRD. BET analysis shows the presence of oxygen groups was decrease the specific surface area whereas the presence of transition metals had increased the surface area. Hydrogen adsorption test at 150 psi indicates that oxygen groups are not a good adsorption characteristic with only a maximum of 0.39 wt% of hydrogen was adsorbed compared to pristine activated carbon’s 0.42 wt% at 150 psi. The presence of transition metals, copper, nickel and palladium increased the overall hydrogen uptake with 0.52 wt%, 0.44 wt% and 0.62 wt% respectively at 150 psi.


2020 ◽  
pp. 118-125
Author(s):  
Esraa M. Abd El-halim ◽  
Mennatullah M. Moustafa ◽  
Alaa A. Mahmoud ◽  
Hager S. Ahmed ◽  
Emad A. Shalaby

The problem of fossil fuel increases by time around the world, Biodiesel is an environmentally friend renewable diesel fuel alternative. The present work aims to determine the possibility for biofuel production from non-edible plant (Water hyacinth) and waste cooking oils in addition to potential uses as source for glycerol, pigments and antioxidant compound sources. this study aimed to investigate the feasibility of biodiesel production from water hyacinth using two solvent systems (chloroform: methanol, 2:1v/v and Hexane), Moreover, WCO applying one steps alkaline transesterification process using methanol, NaOH (0.25) and KOH (0.25, 0.5 and 1g) as a catalyst and hot distilled water for purification. both produced biodiesel (from Eichhornia and WCO) was characterized using FTIR and some chemical constant such as IV, SV and AV. The highest biodiesel produced from Eichhornia recorded with chloroform: methanol system when compared with Hexane. However, the highest biodiesel produced from WCO was recorded when using KOH (0.25g). Also, the obtained results reported the possibility for use glycerol produced from the both biofuel sources in body butter (makhmaria) production, Authors concluded that, the produced biodiesel from both sources was within the recommended standards of biodiesel fuel. Also, water hyacinth became useful in antioxidant compounds production, the contained pigments may be used as natural coloring substances in different fields.


2020 ◽  
Vol 8 (3) ◽  
pp. 87-94
Author(s):  
Ganesh Lamichhane ◽  
Sujan Khadka ◽  
Sanjib Adhikari ◽  
Niranjan Koirala ◽  
Dhruba Prasad Poudyal

Haphazard mining and consumption of fossil fuels have reduced petroleum reserves causing fossil fuel depletion and environmental degradation; thus, reflecting the need of the cheaper, renewable and eco-friendly alternative source of petroleum to meet the fuel demand. Million liters of edible oil used for cooking foods and date expired oils from oil manufacturers are discarded into sewage. This study primarily intends to study the feasibility of biodiesel production using such waste oils. In this work, biodiesel was prepared from waste cooking oils by a process called transesterification with NaOH as a catalyst. Our results showed that methyl ester (biodiesel) (92.67±0.90%), soap materials (1.33±0.224%) and glycerol (6±0.68%) were obtained after the transesterification of waste cooking oil. The physicochemical properties of biodiesel such as density, viscosity, volatility, surface tension and flashpoint were analyzed, which were found to be 0.862±0.006 g/cm3, 2.23±0.021 cP, 0.327×10-3±4.5×10-6 g/s, 32.03±0.138 dyne/cm, 169.67±0.810°C, respectively. These properties were compared with that of commercial diesel as well as with the values specified by the American Society for Testing and Materials (ASTM) D6751. The density and the surface tension of the biodiesel were found similar to that of petrodiesel but its volatility was 3 times lower. Fourier-transform infrared spectroscopy (FTIR) spectra of the biodiesel showed methyl ester functional group at 1436 cm-1. Based on the cost of the materials used for production, the cost of biodiesel was estimated to be about 81 Nepalese rupees (0.67 USD) per liter. The properties of biodiesel also met the standard values of ASTM D6751. These findings indicate that waste oil is one of the feasible biodiesel sources and it can be used as a suitable alternative to petrodiesel.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 504
Author(s):  
Yane Ansanay ◽  
Praveen Kolar ◽  
Ratna Sharma-Shivappa ◽  
Jay Cheng ◽  
Consuelo Arellano

In the present research, activated carbon-supported sulfonic acid catalysts were synthesized and tested as pretreatment agents for the conversion of switchgrass into glucose. The catalysts were synthesized by reacting sulfuric acid, methanesulfonic acid, and p-toluenesulfonic acid with activated carbon. The characterization of catalysts suggested an increase in surface acidities, while surface area and pore volumes decreased because of sulfonation. Batch experiments were performed in 125 mL serum bottles to investigate the effects of temperature (30, 60, and 90 °C), reaction time (90 and 120 min) on the yields of glucose. Enzymatic hydrolysis of pretreated switchgrass using Ctec2 yielded up to 57.13% glucose. Durability tests indicated that sulfonic solid-impregnated carbon catalysts were able to maintain activity even after three cycles. From the results obtained, the solid acid catalysts appear to serve as effective pretreatment agents and can potentially reduce the use of conventional liquid acids and bases in biomass-into-biofuel production.


Resources ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 108 ◽  
Author(s):  
Alberto Mannu ◽  
Gina Vlahopoulou ◽  
Paolo Urgeghe ◽  
Monica Ferro ◽  
Alessandra Del Caro ◽  
...  

The chemical composition and the color of samples of waste cooking oils (WCOs) were determined prior to and after filtration on two different pads of bentonite differing in particle size. The volatile fraction was monitored by headspace solid-phase microextraction (HS-SPME) coupled with gas-chromatography, while the variation of the composition of the main components was analyzed by 1H NMR. Both techniques allowed the detection of some decomposition products, such as polymers, terpenes, and derivatives of the Maillard process. The analysis of the chemical composition prior to and after bentonite treatment revealed a tendency for the clays to retain specific chemical groups (such as carboxylic acids or double bonds), independent of their particle size. A pair comparison test was conducted in order to detect the sensory differences of the intensity of aroma between the WCO treated with the two different bentonites. In addition, characterization of the bentonite by means of powder X-ray diffraction (XRD) and thermogravimetric measurements (TG) was performed.


2013 ◽  
Vol 36 (4) ◽  
pp. 547-551 ◽  
Author(s):  
T S SONIA ◽  
P A MINI ◽  
R NANDHINI ◽  
KALLURI SUJITH ◽  
BALAKRISHNAN AVINASH ◽  
...  

Author(s):  
Vinoth E

Biodiesel is receiving increased attention as an alternative, non-toxic, biodegradable and renewable diesel fuel and contributes a minimum amount of net greenhouse gases, such as CO2, SO2 and NO emissions to the atmosphere. Exploring new energy resources, such as biofuel is of growing importance in recent years. The possibility of obtaining oil from plant resources has created a great importance in several countries. Vegetable oil after esterification being used as bio diesel, Considering the cost and demand of the edible oil is bearable, so it may be preferred for the preparation of bio diesel in India.  The transesterification of waste cooking oils with methanol as well as the main uses of the fatty acid methyl esters are reviewed. The general aspects of this process and the applicability of different types of catalysts (acids, alkaline metal hydroxides, alkoxides and carbonates, enzymes and non-ionic bases, such as amines, amides, and guanidine and triamino (imino) phosphoranes) are described. Transesterification is carried in a reaction cavity, once the reaction is complete, glycerine and biodiesel are gravity separated.   


Sign in / Sign up

Export Citation Format

Share Document