scholarly journals An overview of the solid state fermentation in the production of fungal protease enzymes

2021 ◽  
Vol 9 (3) ◽  
pp. 085-089
Author(s):  
Sambo S ◽  
Magashi AM ◽  
Farouq AA ◽  
Hassan SW

Enzymes are among the most important products obtained for human needs through microbial sources. A large number of industrial processes in the area of industrial, environmental and food technology utilize enzymes at some stage or another; Solid State Fermentation (SSF) holds tremendous potential for the production of enzymes, especially in those processes where the crude fermented product may be used directly as the enzyme source. Fungal proteases are used in many industrial processes for the production of foods and metabolites, production of enzymes from fungi offered many advantages which include low cost and high productivity. Hence because of the higher yielding capacity of SSF and the demand for proteases it highly imperative to search for novel microorganisms from possible environment and subject them to SSF for protease investigation to add up to the nation need of the enzymes and boast economy.

Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4832
Author(s):  
Jia Wei Peng ◽  
Ho Shing Wu

In the present study, we aimed to obtain a high yield and productivity for glucosamine using a low-cost solid-state culture with Aspergillus sydowii BCRC 31742. The fermentation conditions, such as inoculum biomass, moisture content, and supplemental volume and mineral salt, were chosen to achieve high productivity of glucosamine (GlcN). When the initial supplemental volume used was 3 mL/g substrate, the yield and productivity of GlcN were 48.7 mg/gds and 0.69 mg/gds·h, respectively. This result will be helpful for the industrialization of the process.


2017 ◽  
Vol 118 ◽  
pp. 19-26 ◽  
Author(s):  
Mohd Anis Ganaie ◽  
Hemant Soni ◽  
Gowhar Ahmad Naikoo ◽  
Layana Taynara Santos Oliveira ◽  
Hemant Kumar Rawat ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 704
Author(s):  
Chia-Yu Tsui ◽  
Chun-Yao Yang

Elaeocarpus serratus L. leaves (EL) containing phenolic compounds and flavonoids, including myricitrin with pharmacological properties, could be valorized as nutritional additive in foods. In this study, the semi-solid-state fermentation of EL and black soymilk (BS) by Lactobacillus plantarum BCRC 10357 was investigated. Without adding EL in MRS medium, the β-glucosidase activity of L. plantarum quickly reduced to 2.33 ± 0.15 U/mL in 36 h of fermentation; by using 3% EL, the stability period of β-glucosidase activity was prolonged as 12.94 ± 0.69 U/mL in 12 h to 13.71 ± 0.94 in 36 h, showing positive response of the bacteria encountering EL. Using L. plantarum to ferment BS with 3% EL, the β-glucosidase activity increased to 23.78 ± 1.34 U/mL in 24 h, and in the fermented product extract (FPE), the content of myricitrin (2297.06 μg/g-FPE) and isoflavone aglycones (daidzein and genistein, 474.47 μg/g-FPE) at 48 h of fermentation were 1.61-fold and 1.95-fold of that before fermentation (at 0 h), respectively. Total flavonoid content, myricitrin, and ferric reducing antioxidant power in FPE using BS and EL were higher than that using EL alone. This study developed the potential fermented product of black soymilk using EL as a nutritional supplement with probiotics.


2018 ◽  
Vol 12 (1) ◽  
pp. 189-203 ◽  
Author(s):  
Georgi Dobrev ◽  
Hristina Strinska ◽  
Anelia Hambarliiska ◽  
Boriana Zhekova ◽  
Valentina Dobreva

Background: Rhizopus arrhizus is a potential microorganism for lipase production. Solid-state fermentation is used for microbial biosynthesis of enzymes, due to advantages, such as high productivity, utilization of abundant and low-cost raw materials, and production of enzymes with different catalytic properties. Objective: The objective of the research is optimization of the conditions for lipase production in solid-state fermentation by Rhizopus arrhizus in a nutrient medium, containing agroindustrial wastes. Method: Biosynthesis of lipase in solid-state fermentation by Rhizopus arrhizus was investigated. The effect of different solid substrates, additional carbon and nitrogen source, particles size and moisture content of the medium on enzyme production was studied. Response surface methodology was applied for determination of the optimal values of moisture content and tryptone concentration. A procedure for efficient lipase extraction from the fermented solids was developed. Results: Highest lipase activity was achieved when wheat bran was used as a solid substrate. The addition of 1% (w/w) glucose and 5% (w/w) tryptone to the solid medium significantly increased lipase activity. The structure of the solid medium including particles size and moisture content significantly influenced lipase production. A mathematical model for the effect of moisture content and tryptone concentration on lipase activity was developed. Highest enzyme activity was achieved at 66% moisture and 5% (w/w) tryptone. The addition of the non-ionic surfactant Disponyl NP 3070 in the eluent for enzyme extraction from the fermented solids increased lipase activity about three folds. Conclusion: After optimization of the solid-state fermentation the achieved 1021.80 U/g lipase activity from Rhizopus arrhizus was higher and comparable with the activity of lipases, produced by other fungal strains. The optimization of the conditions and the use of low cost components in solid-state fermentation makes the process economicaly effective for production of lipase from the investigated strain Rhizopus arrhizus.


Sign in / Sign up

Export Citation Format

Share Document