scholarly journals Efisiensi Pemberian Air Pada Jaringan Irigasi Way Bini Kecamatan Waeapo Kabupaten Buru Provinsi Maluku

Agrologia ◽  
2018 ◽  
Vol 5 (2) ◽  
Author(s):  
Said Ar Assagaf ◽  
Charles Silahooy ◽  
Pieter J Kunu ◽  
Silwanus Talakua ◽  
Rudi Soplanit

Dams irrigation system is important facility to ensure the water availability during rice cultivation. The aim of this study was to verify the condition of Way Bini irrigation system in providing irrigation water and water distribution system to meet the needs of rice cultivation in Savana Jaya Village, Waeapo Subdistrict, Buru District. The research used survey method. The results showed that the irrigation water debit required for appropriate rice cultivtion was 677.16 L/sec (0.68 m3/sec) which was smaller than that of the Way Bini dam; 750 L / s (0.75 m3 / s), while the efficiency of the irrigation water requirement was 70% which was categorized as good to excellent.

1970 ◽  
Vol 1 (2) ◽  
pp. 63-71 ◽  
Author(s):  
Md. Mosiur Rahman ◽  
A.H.M. Kamal ◽  
Abdullah Al Mamun ◽  
Md. Shafi Uddin Miah

Irrigated agriculture has been playing a vital role for the growth in crop production in Bangladesh. Minor irrigation comprising of shallow tubewells (STWs), deep tubewells (DTWs), hand tubewells (HTWs) and low-lift pumps (LLPs) is a major irrigation system in the country. Poor performance of irrigation is an issue for the expansion of irrigated area. The present study was carried out to examine the conveyance efficiency and rate of irrigation water loss in DTW schemes in Bogra, Thakurgaon and Godagari zones of Barind Management Development Authority. There were various types of water distribution identified in these schemes with including Poly Venyl Chloride (PVC) buried pipe, cement concrete (CC) rectangular, Ferro trapezoidal, Ferro semicircular and rectangular earth drain. The average conveyance efficiency of PVC buried pipe for Bogra, Thakurgaon and Godagari zones ranged from 94.46% to 95.37% and rate of water loss ranged from 5.45% to 9.55% in three study zones. Average conveyance efficiency of CC rectangular for Bogra and Godagari zone ranged from 91.20% and rate of water loss from 6.58% to 9.93%. Average conveyance efficiency of Ferro trapezoid for Bogra and Godagari zone ranged from 87.80% to 90.06% and rate of water loss ranged from 9.94% to 12.21%. Average conveyance efficiency of Ferro semicircle for Bogra and Godagari zone ranged between 88.13% and 86.82% and rate of water loss between 11.59% and 11.68%. Average conveyance efficiency and rate of water loss of rectangular earth drain Godagari zone was 58.66% and 42.29% respectively. About 80% farmers recommended buried pipe irrigation system and about 20% semi-circular channel. The study suggests that the improved water distribution system as developed by BMDA is sustainable to increase productivity of irrigation systems in Bangladesh. DOI: http://dx.doi.org/10.3329/jbayr.v1i2.10032


2019 ◽  
Vol 8 (2) ◽  
pp. 290
Author(s):  
Yuda Arnanda ◽  
I Wayan Tika ◽  
Ida Ayu Luh Gede Bintang Madrini

Sistem subak adalah merupakan salah satu bentuk sistem irigasi yang mampu mengakomodasikan dinamika sistem sosio-teknis masyarakat setempat. Air irigasi dikelola dengan prinsip-prinsip keadilan, keterbukaan, harmoni dan kebersamaan, melalui suatu organisasi yang fleksibel yang sesuai dengan kepentingan masyarakat. Sistem irigasi erat kaitannya tentang pendistribusian air irigasi pada subak yang berdasarkan luas lahan. Salah satu aspek yang akan dinilai dalam sistem irigasi adalah Rasio Prestasi Manajemen (RPM) irigasi Tujuan penelitian ini adalah untuk mengetahui klasifikasi RPM di suatu subak dengan pemberian skor pada masing-masing klasifikasi RPM. Perolehan data sekunder dilakukan dengan metode survey, pengamatan secara langsung dan pengukuran. Data yang telah dikumpulkan selanjutnya akan dianalisis menggunakan metode Rasio Prestasi Manajemen (RPM) Irigasi. RPM irigasi setiap subak dinilai dengan menggunakan empat rentang nilai yaitu Baik bila 0.75 < RPM <1.25, Cukup bila 0.60 < RPM < 0.75 atau 1.25 < RPM < 1.40, Kurang 0.40 < RPM< 0.60 atau 1.40 <RPM<1.60 dan Sangat kurang bila RPM < 0.40 atau RPM >1.60 Hasil metode analisis rasio prestasi manajemen irigasi pada distribusi air di subak diperoleh RPM daerah hulu yaitu Pama Palian, Aya I dan Aya II memiliki RPM yang Baik yaitu rata-rata 100%. Ketersediaan air yang begitu melimpah karena subak daerah hulu, subak yang pertama kali mengambil air di daerah irigasi. Dan yang paling penting adalah sistim pengaturan pemberian air yang sudah optimal. Untuk subak daerah tengah RPM sedikit berbeda dengan di daerah hulu. Rata-rata RPM daerah irigasi tengah yang mempunyai kreteria Cukup yaitu sebesar 15,5% sedangkan Baik 84,5%. Untuk daerah irigasi tengah yang memiliki kriteria RPM cukup dengan nilai 15,5% disebabkan oleh pendistribusian air tidak seoptimal seperti daerah irigasi hulu. Untuk Subak daerah irigasi hilir rata-rata RPM secara keseluruhan yaitu 100% baik, ini disebabkan karena pembagian pendistribusian air daerah irigasi hilir sudah optimal sesuai dengan luas lahan.   Subak system is one form of irrigation system that is able to accommodate the dynamics of the socio-technical system of the local community. Irrigation water is managed with the principles of justice, openness, harmony and togetherness, through a flexible organization that is in accordance with the interests of the community. Irrigation systems are closely related to the distribution of irrigation water in subaks based on land area. One aspect that will be assessed in an irrigation system is the Irrigation Management Achievement Ratio (RPM). The purpose of this study is to determine the RPM classification in a subak by scoring in each RPM classification. Secondary data acquisition is done by survey method, direct observation and measurement. The collected data will then be analyzed using the Irrigation Management Achievement Ratio (RPM) method. Irrigation RPM for each subak is assessed using four ranges of values, namely Good if 0.75 <RPM <1.25, Enough if 0.60 <RPM <0.75 or 1.25 <RPM <1.40, Less 0.40 <RPM <0.60 or 1.40 <RPM <1.60 and Very less if RPM <0.40 or RPM> 1.60 The results of the analysis method of irrigation management achievement ratio in the distribution of water in the subak obtained by the upstream area RPM namely Pama Palian, Aya I and Aya II have a good RPM that is an average of 100%. The availability of water is so abundant due to the upstream subak, the first subak to take water in an irrigation area. And the most important thing is the optimal water supply management system. For the subak area the RPM is slightly different from the upstream area. The average RPM of the central irrigation area that has sufficient criteria is 15.5% while 84.5% is good. For the central irrigation area which has sufficient RPM criteria with a value of 15.5% caused by the distribution of water is not as optimal as the upstream irrigation area. For Subak downstream irrigation areas the overall average RPM is 100% good, this is because the distribution of downstream irrigation water distribution is optimal according to the area of ??land.


2019 ◽  
Vol 8 (2) ◽  
pp. 204
Author(s):  
I Kadek Arya Santika ◽  
I Wayan Tika ◽  
I Putu Gede Budisanjaya

Sistem subak adalah merupakan salah satu bentuk sistem irigasi yang mampu mengakomodasikan dinamika sistem sosio-teknis masyarakat setempat. Air irigasi dikelola dengan prinsip-prinsip keadilan, keterbukaan, harmoni dan kebersamaan, melalui suatu organisasi yang fleksibel yang sesuai dengan kepentingan masyarakat. Sistem irigasi erat kaitannya tentang pemberian air irigasi pada tanaman budidaya tanaman padi. Salah satu aspek yang akan dinilai dalam sistem irigasi adalah Rasio Prestasi Manajemen (RPM) irigasi Tujuan  penelitian ini adalah untuk mengetahui klasifikasi RPM di suatu subak dengan pemberian skor pada masing-masing klasifikasi RPM. Perolehan data sekunder dilakukan dengan metode survey, pengamatan secara langsung dan pengukuran sedangkan data primer diperoleh dari BMKG Wilayah III Denpasar. Data yang telah dikumpulkan selanjutnya akan dianalisis menggunakan metode Rasio Prestasi Manajemen (RPM) Irigasi. RPM irigasi setiap subak dinilai dengan menggunakan empat rentang nilai yaitu Baik bila 0.75 < RPM <1.25, Cukup bila 0.60 < RPM < 0.75 atau 1.25 < RPM < 1.40, Kurang 0.40 < RPM< 0.60 atau 1.40 <RPM<1.60 dan Sangat kurang bila RPM < 0.40 atau RPM >1.60  Hasil metode analisis rasio prestasi manajemen irigasi pada budidaya tanaman padi diperoleh RPM daerah hulu dari periode I sampai VII rasio prestasi manajemen irigasinya dengan nilai rata-rata 10.05 (Sangat Kurang) dan untuk daerah tengah RPM irigasi dari periode I sampai V nilai rata-ratanya 1.78 (Sangat Kurang), periode VI dengan nilai 1.56 (Kurang), periode VII dengan nilai 1.03 (Baik) sedangkan untuk subak daerah hilir diperoleh RPM irigasinya dari periode I sampai III dengan nilai rata-rata 2.25 (Sangat Kurang) dan untuk periode IV sampai VII dengan nilai rata-rata 0.92 (Baik). Berdasarkan hasil analisis tersebut, dapat dinyatakan bahwa subak daerah hilir memiliki RPM irigasi untuk budidaya tanaman padi lebih baik dibandingkan dengan daerah hulu dan tengah.   Subak system is one form of irrigation system that is able to accommodate the dynamics of the socio-technical system of the local community. Irrigation water is managed with the principles of justice, openness, harmony and togetherness, through a flexible organization that is in accordance with the interests of the community. Irrigation systems are closely related to the provision of irrigation water to rice cultivation plants. One aspect that will be assessed in an irrigation system is the Irrigation Management Performance Ratio (MPR). The purpose of this study is to determine the MPR classification in a subak by scoring in each MPR classification. Secondary data acquisition is done by survey method, direct observation and measurement, while primary data is obtained from BMKG Region III Denpasar. The data that has been collected will then be rated and analyzed. Irrigation MPR for each subak is assessed using four ranges of values: Good if 0.75 <MPR<1.25, Sufficient if 0.60 <MPR <0.75 or 1.25 <MPR<1.40, Less 0.40 <MPR <0.60 or 1.40 <MPR <1.60 and Very less if MPR<0.40 or MPR> 1.60. The results of the analysis method of irrigation management achievement ratio in the cultivation of rice obtained by the upstream area MPR from periods I to VII irrigation management achievement ratio with an average value of 10.05 (Very Less) and for the middle area of irrigation MPR from period I to V the average value is 1.78 (Very Less), period VI with a value of 1.56 (Less), period VII with a value of 1.03 (Good) while for the downstream subak the MPR was obtained from the I to III periods with an average value of 2.25 (Very Less) and for periods IV to VII with an average value of 0.92 (Good). Based on the results of the analysis, it can be stated that the downstream subak has an irrigation MPR for rice cultivation better than the upstream and middle regions.


2019 ◽  
Vol 2 (2) ◽  
pp. 1-8
Author(s):  
Md. Hossain Ali

AbstractDue to intensive irrigated rice cultivation during dry season, declining trend of groundwater level is observed in many parts of Bangladesh. Field experiments were conducted in 2015 and 2016 at four experimental stations of Bangladesh Institute of Nuclear Agriculture, Bangladesh to evaluate the performance of some Boro rice cultivars in different planting dates with respect to yield and irrigation water requirement, and to optimize between yield and irrigation water requirement, with a view to reduce groundwater withdrawal and hence reducing mining of groundwater. The transplanting dates were 21th January (T1), 15th February (T2), 7th March and 30th March. Four rice cultivars were used. The results showed that the rice growth period was shortened with the later dates of transplanting. Generally, the yield of all cultivars at first and second transplanting (i.e. in T1 & T2) are good, and decrease at the later transplanting dates (T3, T4) and hence could not be recommended among farmers. When we consider the irrigation savings in T2 compare to T1, the irrigation savings varies with location and year, but the general tendency is that the second transplanting can save irrigation water. By considering economic (intrusion of additional rabi crop between two rice crops) and ecological factor (irrigation reduction, and hence reducing groundwater withdrawal), we recommend that the most suitable transplanting time for Boro rice should be 15th February. As such, we can effectively achieve good yield, reduce irrigation requirement, and creating opportunity for possible intrusion of addition Rabi crop between two rice crops. Overall, the findings of the present study can provide effective transplanting time and cultivar to reduce groundwater withdrawal in the present agro-ecosystem of northwestern Bangladesh and other similar areas.


Kilat ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 336-348
Author(s):  
Abdul Haris ◽  
Trisma Juwita ◽  
Rosida Nur Aziza ◽  
Hengki Sikumbang ◽  
Riki Ruli A. Siregar

The purpose of this research is to produce an optimal water distribution system for irrigation of rainfed land. The problem with conventional irrigation systems is that the water distribution process cannot be controlled and monitored automatically and in real time. The impact on water distribution becomes ineffective. The implementation of Ant Colony Optimization (ACO) is used in research as a method to determine the location or node based on the pheromone pattern of the soil dryness level at the sprinkler nodes to be distributed by the water flow, taking into account the criteria level on the soil as a trend of probability values ​​and determining the nodes according to the needs in the flow water. The results obtained from this study indicate that the data displayed is the level of dryness of each node, the volume of water in the reservoir, and the flow of water flowing. The ACO test shows the sequence of nodes that will be passed after the optimization process of water distribution in a rainfed irrigation system using the ACO method gets an error value calculated by the MAPE method of 43% so that it gets an accuracy value of 57%.


Author(s):  
Md. Hossain Ali

Due to intensive irrigated rice cultivation during dry season, declining trend of groundwater level is observed in many parts of Bangladesh. Field experiments were conducted in 2015 and 2016 at four experimental stations of Bangladesh Institute of Nuclear Agriculture, Bangladesh to evaluate the performance of some Boro rice cultivars in different planting dates with respect to yield and irrigation water requirement, and to optimize between yield and irrigation water requirement, with a view to reduce groundwater withdrawal and hence reducing mining of groundwater. The transplanting dates were 21th January (T1), 15th February (T2), 7th March and 30th March.  Four rice cultivars were used. The results showed that the rice growth period was shortened with the later dates of transplanting. Generally, the yield of all cultivars at first and second transplanting (i.e. in T1 & T2) are good, and decrease at the later transplanting dates (T3, T4) and hence could not be recommended among farmers. When we consider the irrigation savings in T2 compare to T1, the irrigation savings varies with location and year, but the general tendency is that the second transplanting can save irrigation water. By considering economic (intrusion of additional rabi crop between two rice crops) and ecological factor (irrigation reduction, and hence reducing groundwater withdrawal), we recommend that the most suitable transplanting time for Boro rice should be 15th February. As such, we can effectively achieve good yield, reduce irrigation requirement, and creating opportunity for possible intrusion of addition Rabi crop between two rice crops. Overall, the findings of the present study can provide effective transplanting time and cultivar to reduce groundwater withdrawal in the present agro-ecosystem of northwestern Bangladesh and other similar areas.Keywords:  Boro rice, irrigation requirement, transplanting date, groundwater withdrawal, ecosystem


2005 ◽  
Vol 5 (2) ◽  
pp. 39-46 ◽  
Author(s):  
E.S. Kim ◽  
C.W. Baek ◽  
J.H. Kim

This study proposes an optimal scheduling model for rehabilitation based on the deterioration prediction of existing pipes by using the deterioration survey method for a water distribution system. The deterioration prediction model divides the deterioration degree of each pipe into 5 degrees by using the Probabilistic Neural Networks (PNN). Furthermore, the maximum residual service time is estimated by the calculated deterioration degree for each pipe and pipe diameter. The optimal rehabilitation model by integer programming (IP), based on the shortest path, can calculate the time and cost of maintenance, rehabilitation, and replacement. Consequently, the model proposed by the study can be utilized as a quantitative method for the management of a water distribution system.


Various efforts to improve the welfare of the community have become the priority of government programs currently, especially in providing food by encouraging the development of the irrigation sector. The decline in water resources both in terms of quantity and quality also make a triggers the problem of water distribution when there is an imbalance between demand and supply. The desire among farmers to obtain water immediately may cause problems in how to distribute water fairly and equally. Sempor Irrigation System (5.888 ha) also deal with water distribution problems especially during the dry season. The purpose of this research is to determine the water distribution system based on water optimization therefore the irrigation performance can be measured more precisely. Meanwhile, the methodology is uses descriptive research method on fields’ irrigation research. The results of this study will be obtained a irrigation water use services model.


Sign in / Sign up

Export Citation Format

Share Document