Dual Neural Network Architecture for Determining Permeability and Associated Uncertainty

Author(s):  
Ravinath Kausik ◽  
◽  
Augustin Prado ◽  
Vasileios-Marios Gkortsas ◽  
Lalitha Venkataramanan ◽  
...  

The computation of permeability is vital for reservoir characterization because it is a key parameter in the reservoir models used for estimating and optimizing hydrocarbon production. Permeability is routinely predicted as a correlation from near-wellbore formation properties measured through wireline logs. Several such correlations, namely Schlumberger-Doll Research (SDR) permeability and Timur-Coates permeability models using nuclear magnetic resonance (NMR) measurements, K-lambda using mineralogy, and other variants, have often been used, with moderate success. In addition to permeability, the determination of the uncertainties, both epistemic (model) and aleatoric (data), are important for interpreting variations in the predictions of the reservoir models. In this paper, we demonstrate a novel dual deep neural network framework encompassing a Bayesian neural network (BNN) and an artificial neural network (ANN) for determining accurate permeability values along with associated uncertainties. Deep-learning techniques have been shown to be effective for regression problems but quantifying the uncertainty of their predictions and separating them into the epistemic and aleatoric fractions is still considered challenging. This is especially vital for petrophysical answer products because these algorithms need the ability to flag data from new geological formations that the model was not trained on as “out of distribution” and assign them higher uncertainty. Additionally, the model outputs need sensitivity to heteroscedastic aleatoric noise in the feature space arising due to tool and geological origins. Reducing these uncertainties is key to designing intelligent logging tools and applications, such as automated log interpretation. In this paper, we train a BNN with NMR and mineralogy data to determine permeability with associated epistemic uncertainty, obtained by determining the posterior weight distributions of the network by using variational inference. This provides us the ability to differentiate in- and out-of-distribution predictions, thereby identifying the suitability of the trained models for application in new geological formations. The errors in the prediction of the BNN are fed into a second ANN trained to correlate the predicted uncertainty to the error of the first BNN. Both networks are trained simultaneously and therefore optimized together to estimate permeability and associated uncertainty. The machine-learning permeability model is trained on a “ground-truth” core database and demonstrates considerable improvement over traditional SDR and Timur-Coates permeability models on wells from the Ivar Aasen Field. We also demonstrate the value of information (VOI) of different logging measurements by replacing the logs with their median values from nearby wells and studying the increase in the mean square errors.

Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3371 ◽  
Author(s):  
Tao Yin ◽  
Hong-ping Zhu

Excellent pattern matching capability makes artificial neural networks (ANNs) a very promising approach for vibration-based structural health monitoring (SHM). The proper design of the network architecture with the suitable complexity is vital to the ANN-based structural damage detection. In addition to the number of hidden neurons, the type of transfer function used in the hidden layer cannot be neglected for the ANN design. Neural network learning can be further presented in the framework of Bayesian statistics, but the issues of selection for the hidden layer transfer function with respect to the Bayesian neural network has not yet been reported in the literature. In addition, most of the research works in the literature for addressing the predictive distribution of neural network output is only for a single target variable, while multiple target variables are rarely involved. In the present paper, for the purpose of probabilistic structural damage detection, Bayesian neural networks with multiple target variables are optimally designed, and the selection of the number of neurons, and the transfer function in the hidden layer, are carried out simultaneously to achieve a neural network architecture with suitable complexity. Furthermore, the nonlinear network function can be approximately linear by assuming the posterior distribution of network parameters is a sufficiently narrow Gaussian, and then the input-dependent covariance matrix of the predictive distribution of network output can be obtained with the Gaussian assumption for the situation of multiple target variables. Structural damage detection is conducted for a steel truss bridge model to verify the proposed method through a set of numerical case studies.


Author(s):  
James M Dawson ◽  
Timothy A Davis ◽  
Edward L Gomez ◽  
Justus Schock

Abstract In the upcoming decades large facilities, such as the SKA, will provide resolved observations of the kinematics of millions of galaxies. In order to assist in the timely exploitation of these vast datasets we blackexplore the use of a self-supervised, physics aware neural network capable of Bayesian kinematic modelling of galaxies. We demonstrate the network’s ability to model the kinematics of cold gas in galaxies with an emphasis on recovering physical parameters and accompanying modelling errors. The model is able to recover rotation curves, inclinations and disc scale lengths for both CO and H i data which match well with those found in the literature. The model is also able to provide modelling errors over learned parameters thanks to the application of quasi-Bayesian Monte-Carlo dropout. This work shows the promising use of machine learning, and in particular self-supervised neural networks, in the context of kinematically modelling galaxies. This work represents the first steps in applying such models for kinematic fitting and we propose that variants of our model would seem especially suitable for enabling emission-line science from upcoming surveys with e.g. the SKA, allowing fast exploitation of these large datasets.


2021 ◽  
Author(s):  
Craig K Jones ◽  
Guoqing Wang ◽  
Vivek Yedavalli ◽  
Haris Sair

This work shows a derivation of a multinomial probability function and quantitative measures of the data and epistemic uncertainty as direct output of a 3D U-Net segmentation network. A set of T1 brain MRI images were downloaded from the Connectome Project and segmented using FMRIB's FAST algorithm to be used as ground truth. A 3D U-Net neural network was trained with sample sizes of 200, 500, and 898 T1 brain images using a loss function defined as the negative logarithm of the likelihood based on a derivation of the definition of the multinomial probability function. From this definition, the epistemic (model) and aleatoric (data) uncertainty equations were derived and used to quantify maps of the uncertainty in data prediction. The epistemic and aleatoric uncertainty decreased based on the increasing number of training data used to train the neural network. The neural network trained with 898 volumes resulted in uncertainty maps that were high primarily in the tissue boundary regions. The uncertainty was averaged over all test data (connectome and tumor separately) and the epistemic uncertainty showed a decreasing trend, as expected, with increasing numbers of data used to train the model. The aleatoric uncertainty showed a similar trend, but it was less obvious, which was also expected as the aleatoric uncertainty is not expected to be as dependent on the number of training data. The derived data and epistemic uncertainty equations from a multinomial probability distribution are applicable for all 2D and 3D neural networks.


2020 ◽  
Author(s):  
Paul Molloy ◽  
Joeran Beel ◽  
Akiko Aizawa

The relatedness of research articles, patents, court rulings, webpages, and other document types is often calculated with citation or hyperlink-based approaches like co-citation (proximity) analysis. The main limitation of citation-based approaches is that they cannot be used for documents that receive little or no citations. We propose Virtual Citation Proximity (VCP), a Siamese Neural Network architecture, which combines the advantages of co-citation proximity analysis (diverse notions of relatedness / high recommendation performance), with the advantage of content-based filtering (high coverage). VCP is trained on a corpus of documents with textual features, and with real citation proximity as ground truth. VCP then predicts for any two documents, based on their title and abstract, in what proximity the two documents would be co-cited, if they were indeed co-cited. The prediction can be used in the same way as real citation proximity to calculate document relatedness, even for uncited documents. In our evaluation with 2 million co-citations from Wikipedia articles, VCP achieves an MAE of 0.0055, i.e. an improvement of 20% over the baseline, though the learning curve suggests that more work is needed.


Author(s):  
Rodolfo Quispe ◽  
Darwin Ttito ◽  
Adín Rivera ◽  
Helio Pedrini

Crowd scene analysis has received a lot of attention recently due to a wide variety of applications, e.g., forensic science, urban planning, surveillance and security. In this context, a challenging task is known as crowd counting [1–6], whose main purpose is to estimate the number of people present in a single image. A multi-stream convolutional neural network is developed and evaluated in this paper, which receives an image as input and produces a density map that represents the spatial distribution of people in an end-to-end fashion. In order to address complex crowd counting issues, such as extremely unconstrained scale and perspective changes, the network architecture utilizes receptive fields with different size filters for each stream. In addition, we investigate the influence of the two most common fashions on the generation of ground truths and propose a hybrid method based on tiny face detection and scale interpolation. Experiments conducted on two challenging datasets, UCF-CC-50 and ShanghaiTech, demonstrate that the use of our ground truth generation methods achieves superior results.


2020 ◽  
Vol 2020 (10) ◽  
pp. 54-62
Author(s):  
Oleksii VASYLIEV ◽  

The problem of applying neural networks to calculate ratings used in banking in the decision-making process on granting or not granting loans to borrowers is considered. The task is to determine the rating function of the borrower based on a set of statistical data on the effectiveness of loans provided by the bank. When constructing a regression model to calculate the rating function, it is necessary to know its general form. If so, the task is to calculate the parameters that are included in the expression for the rating function. In contrast to this approach, in the case of using neural networks, there is no need to specify the general form for the rating function. Instead, certain neural network architecture is chosen and parameters are calculated for it on the basis of statistical data. Importantly, the same neural network architecture can be used to process different sets of statistical data. The disadvantages of using neural networks include the need to calculate a large number of parameters. There is also no universal algorithm that would determine the optimal neural network architecture. As an example of the use of neural networks to determine the borrower's rating, a model system is considered, in which the borrower's rating is determined by a known non-analytical rating function. A neural network with two inner layers, which contain, respectively, three and two neurons and have a sigmoid activation function, is used for modeling. It is shown that the use of the neural network allows restoring the borrower's rating function with quite acceptable accuracy.


2020 ◽  
Vol 2020 (10) ◽  
pp. 181-1-181-7
Author(s):  
Takahiro Kudo ◽  
Takanori Fujisawa ◽  
Takuro Yamaguchi ◽  
Masaaki Ikehara

Image deconvolution has been an important issue recently. It has two kinds of approaches: non-blind and blind. Non-blind deconvolution is a classic problem of image deblurring, which assumes that the PSF is known and does not change universally in space. Recently, Convolutional Neural Network (CNN) has been used for non-blind deconvolution. Though CNNs can deal with complex changes for unknown images, some CNN-based conventional methods can only handle small PSFs and does not consider the use of large PSFs in the real world. In this paper we propose a non-blind deconvolution framework based on a CNN that can remove large scale ringing in a deblurred image. Our method has three key points. The first is that our network architecture is able to preserve both large and small features in the image. The second is that the training dataset is created to preserve the details. The third is that we extend the images to minimize the effects of large ringing on the image borders. In our experiments, we used three kinds of large PSFs and were able to observe high-precision results from our method both quantitatively and qualitatively.


1993 ◽  
Author(s):  
John R. McDonnell ◽  
Don Waagen

Sign in / Sign up

Export Citation Format

Share Document