scholarly journals Structure, Texture and Tensile Properties of Ti6Al4V Produced by Selective Laser Melting

2019 ◽  
Vol 25 (25) ◽  
pp. 60-65
Author(s):  
Radomila Konečná ◽  
Denisa Medvecká ◽  
Gianni Nicoletto

Abstract Additive manufacturing has recently expanded its potential with the development of selective laser melting (SLM) of metallic powders. This study investigates the relation between the mechanical properties and the microstructure of Ti6Al4V alloy produced by SLM followed by a hot isostatic pressing (HIP) treatment. HIP treatment minimizes the detrimental influence of material defects. Tensile specimens produced with reference to specific building axes were prepared using a Renishaw A250 system. It has been found that the tensile strength and elongation depend on specimen building direction. Microstructural and textural characterizations were carried out to identify the source of differences.

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3603
Author(s):  
Tim Pasang ◽  
Benny Tavlovich ◽  
Omry Yannay ◽  
Ben Jakson ◽  
Mike Fry ◽  
...  

An investigation of mechanical properties of Ti6Al4V produced by additive manufacturing (AM) in the as-printed condition have been conducted and compared with wrought alloys. The AM samples were built by Selective Laser Melting (SLM) and Electron Beam Melting (EBM) in 0°, 45° and 90°—relative to horizontal direction. Similarly, the wrought samples were also cut and tested in the same directions relative to the plate rolling direction. The microstructures of the samples were significantly different on all samples. α′ martensite was observed on the SLM, acicular α on EBM and combination of both on the wrought alloy. EBM samples had higher surface roughness (Ra) compared with both SLM and wrought alloy. SLM samples were comparatively harder than wrought alloy and EBM. Tensile strength of the wrought alloy was higher in all directions except for 45°, where SLM samples showed higher strength than both EBM and wrought alloy on that direction. The ductility of the wrought alloy was consistently higher than both SLM and EBM indicated by clear necking feature on the wrought alloy samples. Dimples were observed on all fracture surfaces.


Author(s):  
Yachao Wang ◽  
Jing Shi ◽  
Yun Wang

Metal components produced by additive manufacturing processes usually have inferior properties and performances as compared with the counterparts by the traditional forming and machining processes. To close the gap, the metal matrix can be strengthened by adding reinforcement particles in additive manufacturing processes. This research presents the fabrication of nano-TiC reinforced Inconel 718 composites using selective laser melting (SLM). Tensile and wear performance tests are conducted to evaluate the mechanical properties of the formed composites. It is discovered that the composites exhibit improved mechanical properties in terms of ultimate tensile strength and yield stress. Compared with the pure Inconel 718 specimens by SLM, the ultimate tensile strength and yield stress of the reinforced Inconel 718 increase by 207 MPa and 204 MPa, respectively, with 0.5 wt.% addition of nano-TiC particle. Smaller increases are observed with 0.25 wt.% and 1.0 wt.% nano-TiC additions. On the other hand, the addition of nano-TiC particles decreases the ductility of Inconel 718. To investigate the strengthening mechanism of nano reinforcement particles in SLM, the microstructures with different levels of nano-TiC particles are observed. The results indicate that the microstructure of Inconel 718 is remarkably refined by the TiC particles, and the reinforcement particle significantly impede the growth of columnar grain in the solidification process.


2016 ◽  
Vol 879 ◽  
pp. 1008-1013 ◽  
Author(s):  
Alena Kreitcberg ◽  
Vladimir Brailovski ◽  
Sylvain Turenne ◽  
Cyrille Chanal ◽  
Victor Urlea

This study provides a summary of the effect of heat and hot isostatic pressing treatments on the microstructure and mechanical properties of IN625 alloy processed by selective laser melting. IN625 metallographic and tensile testing specimens were additively manufactured in four different orientations and then subjected to stress relief, low solution annealing and hot isostatic pressing treatments. The as-built alloy exhibited the highest tensile strength, the lowest ductility and the highest anisotropy of mechanical properties among all the tested specimens. Heat and hot isostatic pressing treatments provided an improvement in ductility and homogeneity, but at the expense of lower strength characteristics. The results of this study provide some indications for improving the mechanical properties of additively manufactured IN625 alloy components.


2019 ◽  
Vol 822 ◽  
pp. 563-568
Author(s):  
Vadim Sufiiarov ◽  
Evgenii Borisov ◽  
Igor A. Polozov

The article presents the results of a study on the additive manufacturing of functional graded steel parts. Studies have been carried out on the possibility of growing blanks from two steels simultaneously – tool steel H13 and stainless steel 316L. The study of the microstructure of the transition from one steel to another showed that the transition layer is smooth and is about 200 microns thick. The mechanical properties in the transition layer are distributed over the gradient and smoothly change from one material to another. The structure and properties of the transition layer after heat treatment and hot isostatic pressing are shown.


Sign in / Sign up

Export Citation Format

Share Document