THE METHOD OF RECOVERY OF ROCKS’ RESIDUAL WATER SATURATION COEFFICIENT BY SETTING THE CAPILLARY CURVE MATHEMATICAL MODEL

2018 ◽  
pp. 27-30
Author(s):  
A.V. Kolonskikh ◽  
◽  
Yu.V. Martynova ◽  
S.P. Mikhaylov ◽  
R.R. Murtazin ◽  
...  
2020 ◽  
pp. 28-34
Author(s):  
I.S. Putilov ◽  
◽  
I.P. Gurbatova ◽  
S.V. Melekhin ◽  
M.S. Sergeev ◽  
...  

2021 ◽  
Author(s):  
Anton Vasilievich Glotov ◽  
Anton Gennadyevich Skripkin ◽  
Petr Borisovich Molokov ◽  
Nikolay Nilovich Mikhailov

Abstract The article presents a new method of determining the residual water saturation of the Bazhenov Rock Formation using synchronous thermal analysis which is combined with gas IR and MS spectroscopy. The efficiency of the extraction-distillation method of determining open porous and residual saturation in comparison with the developed method which are considered in detail. Based on the results of studies in the properties of the Bazhenov Rock Formation, a significant underestimation of the residual water saturation in the existing guidelines for calculating reserves was found, and the structure of the saturation of rocks occurred to be typical for traditional low-permeability reservoirs. The values of open porous and residual water saturation along the section of the Bazhenov Formation vary greatly, which also contradicts the well-established opinion about the weak variability of the rock properties with depth.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 576 ◽  
Author(s):  
Cheng Cao ◽  
Jianxing Liao ◽  
Zhengmeng Hou ◽  
Hongcheng Xu ◽  
Faisal Mehmood ◽  
...  

Underground gas storage reservoirs (UGSRs) are used to keep the natural gas supply smooth. Native natural gas is commonly used as cushion gas to maintain the reservoir pressure and cannot be extracted in the depleted gas reservoir transformed UGSR, which leads to wasting huge amounts of this natural energy resource. CO2 is an alternative gas to avoid this particular issue. However, the mixing of CO2 and CH4 in the UGSR challenges the application of CO2 as cushion gas. In this work, the Donghae gas reservoir is used to investigate the suitability of using CO2 as cushion gas in depleted gas reservoir transformed UGSR. The impact of the geological and engineering parameters, including the CO2 fraction for cushion gas, reservoir temperature, reservoir permeability, residual water and production rate, on the reservoir pressure, gas mixing behavior, and CO2 production are analyzed detailly based on the 15 years cyclic gas injection and production. The results showed that the maximum accepted CO2 concentration for cushion gas is 9% under the condition of production and injection for 120 d and 180 d in a production cycle at a rate of 4.05 kg/s and 2.7 kg/s, respectively. The typical curve of the mixing zone thickness can be divided into four stages, which include the increasing stage, the smooth stage, the suddenly increasing stage, and the periodic change stage. In the periodic change stage, the mixed zone increases with the increasing of CO2 fraction, temperature, production rate, and the decreasing of permeability and water saturation. The CO2 fraction in cushion gas, reservoir permeability, and production rate have a significant effect on the breakthrough of CO2 in the production well, while the effect of water saturation and temperature is limited.


2020 ◽  
Vol 38 (3-4) ◽  
pp. 127-147
Author(s):  
Weiyong Lu ◽  
Bingxiang Huang

During hydraulic fracturing in gassy coal, methane is driven by hydraulic fracturing. However, its mathematical model has not been established yet. Based on the theory of ‘dual-porosity and dual-permeability’ fluid seepage, a mathematical model is established, with the cleat structure, main hydraulic fracture and methane driven by hydraulic fracturing considered simultaneously. With the help of the COMSOL Multiphysics software, the numerical solution of the mathematical model is obtained. In addition, the space–time rules of water and methane saturation, pore pressure and its gradient are obtained. It is concluded that (1) along the direction of the methane driven by hydraulic fracturing, the pore pressure at the cleat demonstrates a trend of first decreasing and later increasing. The pore pressure gradient exhibits certain regional characteristics along the direction of the methane driven by hydraulic fracturing. (2) Along the direction of the methane driven by hydraulic fracturing, the water saturation exhibits a decreasing trend; however, near the cleat or hydraulic fracture, the water saturation first increases and later decreases. The water saturation in the central region of the coal matrix block is smaller than that of its surrounding region, while the saturation of water in the entire matrix block is greater than that in the cleat or hydraulic fracture surrounding the matrix block. The water saturation at the same space point increases gradually with the time progression. The space–time distribution rules of methane saturation are contrary to those of the water saturation. (3) The free methane driven by hydraulic fracturing includes the original free methane and the free methane desorbed from the adsorption methane. The reduction rate of the adsorption methane is larger than that of free methane.


Author(s):  
Sudad Hameed AL-OBAIDI ◽  
Victoria SMIRNOV ◽  
Hiba Hussein ALWAN

Experimental determination of the physical properties of rocks under conditions simulating in situ reservoir conditions is of great importance both for the calculation of reserves and for the interpretation of well logging data. In addition, it is also important for the preparation of hydrocarbon field development projects. The study of the processes of changes in the petrophysical properties of the reservoir under controlled conditions allows not only to determine their reliability but also to evaluate the dynamics of these changes depending on the temperature and pressure conditions of the reservoir and the water saturation of the rocks. In this work, an evaluation of the dependence of the physical properties of hydrocarbon reservoirs on their water saturation (Sw) was carried out. Residual water saturation (Swr) was created in the rocks and the properties of these rocks were compared at the states of partial (25 %) and complete water saturation (100 %). The changes in petrophysical parameters of partially water saturated rocks during the increase in effective pressure were studied and estimates of these changes were obtained. The results showed that when the effective pressure is increased, the Swr increases by an average of 6 % compared to atmospheric conditions. This is accompanied by an increase in the velocity of longitudinal (by 51.9 % on average) and lateral waves (by 37.1 % on average). As residual water saturation increases, effective permeability decreases for both standard and reservoir conditions, with, gas permeability decreasing for both dry samples (by 23 % on average) and samples with residual water saturation (effective permeability decreases by 27 % on average). HIGHLIGHTS Changes in physical properties of hydrocarbon reservoirs by determining physical properties (permeability, porosity, elastic, electrical, deformation strength) under the standard conditions and in physical modelling of reservoir conditions and processes Assessment of the effectiveness of water saturation on the physical properties of the reservoir Comparisons between the petrophysical properties of reservoir core samples in which the pore space is fully saturated with the reservoir fluid model and samples with residual water saturation Experimental determination of the physical properties of rocks under conditions simulating in situ reservoir conditions Estimation of the changes in petrophysical parameters of partial water-saturated rocks during the increase in effective formation pressure GRAPHICAL ABSTRACT


1985 ◽  
Vol 25 (04) ◽  
pp. 521-523 ◽  
Author(s):  
M.F.N. Mohsen

Abstract In the analytical solution of the Buckley-Leverett problem, Welge1 recommends that to locate a front, one should draw a tangent to the fractional saturation curve from the origin. In this paper I establish that this procedure will be correct only for the case of a zero initial condition. For a nonzero initial condition, a mass-conserving front will be located farther down the flow direction. The implications of this finding for error analysis in comparing numerical solutions to the analytical one are discussed. Introduction To establish the accuracy of a numerical solution to the Buckley-Leverett equation, one normally seeks a comparison with the analytical solution. Difficulties arise, however, when a zero initial saturation over the space domain, normally imposed on the analytical solution, is to be expressed numerically while incorporating a nonzero boundary condition. For example, the finite-element method using a "Chapeau" basis function by necessity generates a ramp initial condition. The objective of this paper is to provide a modification to Welge's1 method for an appropriate location of the front on the basis of mass conservation for a condition where some water greater than the residual water saturation is initially present. The analytical solution to the Buckley-Leverett equation is known to yield a multiple-value saturation profile that is resolved by locating a front on the basis of mass conservation. This was suggested by Buckley and Leverett.2 A quick way of locating the front was provided by Welge,1 and is also discussed in Ref. 3. Welge's method locates the front accurately for the particular case when the initial saturation is zero (or a constant residual water saturation) over the entire space domain. In the more general case of a nonzero initial condition (i.e., initial saturation greater than residual saturation), his method needs modification. One such method is presented in this paper. Development of the Modified Technique The Buckley-Leverett equation is given byEquation 1 whereqt=total volumetric flow rate (L3/T),fw=fractional flow of wetting phase,Sw=saturation of wetting phase,t=time (T),x=space coordinate (L),A=cross-sectional area normal to flow (L2), andf=porosity. Introducing ut=qt/Af, the total interstitial flow velocity, Eq. 1 may be written asEquation 2 It was shown by Buckley and Leverett2 that the solution to Eq. 2 may be generated by computing the displacement, ?x, experienced by any saturation, Sw.Equation 3 Owing to the bell-shaped property of dfw/dSw as a function of saturation Sw, the solution of Eq. 3 generates a triple-value function, ?x(Sw,t). The physical incompatibility of the multiplicity of Sw at a given x on the advanced saturation profile of the wetting phase was resolved by Buckley and Leverett2 by locating a front while maintaining conservation of mass. Welge1 rightfully pointed out the computational effort in computing the area every time a solution is required. He established that the mass-conserving front location may be arrived at by drawing (in the fw vs. Sw plane) a tangent from the origin (Sw=Swr, fw=0) to the fw(Sw) curve. The saturation at the point of tangency is the saturation at which the front is to be located. I now show that Welge's method will yield the correct front location only in the special case of zero initial condition - i.e., when Sw(x,0)=Sw for all x. For the more general case of a nonzero (over and above Sw) initial condition, Welge's method will be modified. A nonzero initial condition affects the solution in two respects.


2011 ◽  
Vol 8 (1) ◽  
pp. 25-38
Author(s):  
A.T. Akhmetov ◽  
S.V. Lukin ◽  
D.M. Balapanov ◽  
S.F. Urmancheev ◽  
N.M. Gumerov ◽  
...  

There are the results of experimental and theoretical studies on the propagation of weak shock waves in the wet sand at different water saturation. There are mathematical model and numerical analysis of propagation of pressure pulses in porous media, taking into account capillary forces. Non-monotonic dependence of the amplitude of the wave resulting in a wet porous medium vs. the degree of water saturation is installed. The evolution of the fast, slow and filtration waves depends on the saturation of the system with water is analyzed. The influence of capillary forces on the propagation of longitudinal waves is evaluated.


2021 ◽  
pp. 60-74
Author(s):  
G. A. Smolyakov ◽  
N. V. Gilmanova ◽  
A. V. Sivkova

The article deals with the determination of the reservoir properties of Permian-age carbonate rocks. There is a section dissection technique, taking into account the fossil organisms prevailing for a particular geological age. It was noted a high content of silica in the lower Artinskian deposits of Toravey and Varandey fields of the Komi Republic. The presence of silicon is associated with an increase in the population of siliceous sponges during this period of sedimentation; this fact caused the maximum values of porosity and permeability in the corresponding intervals. However, this was also the reason for the high values of the residual water saturation factor and, as a result, low oil flow rates from the lower Artinskian stage. The need for detailed correlation and accounting for the content of fossils in the rocks when dissecting the well section made it necessary to systematize the available actual material on core and well testing. It became obvious that the separation of reservoirs and stages at the qualitative level isn't possible, so quantitative estimates of the parameters that are significantly different for the upper and lower Artinskian deposits and allow you to dissect the well section were proposed.


Sign in / Sign up

Export Citation Format

Share Document