ON THE SELECTION OF CORRELATIONS FOR A PRESSURE GRADIENT CALCULATION (ON THE EXAMPLE OF SAMARA AND ORENBURG REGIONS)

2020 ◽  
pp. 26-31
Author(s):  
V.P. Shakshin ◽  
◽  
A.A. Mokrev ◽  
V.S. Vasil’ev ◽  
S.A. Belov ◽  
...  
Algorithms ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 163
Author(s):  
Yaru Li ◽  
Yulai Zhang ◽  
Yongping Cai

The selection of the hyper-parameters plays a critical role in the task of prediction based on the recurrent neural networks (RNN). Traditionally, the hyper-parameters of the machine learning models are selected by simulations as well as human experiences. In recent years, multiple algorithms based on Bayesian optimization (BO) are developed to determine the optimal values of the hyper-parameters. In most of these methods, gradients are required to be calculated. In this work, the particle swarm optimization (PSO) is used under the BO framework to develop a new method for hyper-parameter optimization. The proposed algorithm (BO-PSO) is free of gradient calculation and the particles can be optimized in parallel naturally. So the computational complexity can be effectively reduced which means better hyper-parameters can be obtained under the same amount of calculation. Experiments are done on real world power load data,where the proposed method outperforms the existing state-of-the-art algorithms,BO with limit-BFGS-bound (BO-L-BFGS-B) and BO with truncated-newton (BO-TNC),in terms of the prediction accuracy. The errors of the prediction result in different models show that BO-PSO is an effective hyper-parameter optimization method.


2016 ◽  
Vol 805 ◽  
pp. 222-261 ◽  
Author(s):  
A. Roustaei ◽  
T. Chevalier ◽  
L. Talon ◽  
I. A. Frigaard

We study non-inertial flows of single-phase yield stress fluids along uneven/rough-walled channels, e.g. approximating a fracture, with two main objectives. First, we re-examine the usual approaches to providing a (nonlinear) Darcy-type flow law and show that significant errors arise due to self-selection of the flowing region/fouling of the walls. This is a new type of non-Darcy effect not previously explored in depth. Second, we study the details of flow as the limiting pressure gradient is approached, deriving approximate expressions for the limiting pressure gradient valid over a range of different geometries. Our approach is computational, solving the two-dimensional Stokes problem along the fracture, then upscaling. The computations also reveal interesting features of the flow for more complex fracture geometries, providing hints about how to extend Darcy-type approaches effectively.


1984 ◽  
Vol 1 (19) ◽  
pp. 10
Author(s):  
Charles L. Bretschneider ◽  
Jen-Men Lo

A model hurricane is defined by a model pressure profile, which is the same in all radial directions from the center of the hurricane. The model describes concentric circles of constant pressure known as isobars. The slope of the pressure profile gives the pressure gradient used in the gradient wind equation, together with other considerations determines the time history moving hurricane wind and pressure fields. The appropriate model hurricane can then be coupled with various other models for the determination of design criteria such as wind, waves, currents, wave forces, storm surge, wave run-up, coastal flooding and inundation limits. Because of the many requirements for accurate output data, there have always been concerns of the proper use of and selection of the appropriate hurricane model for a particular task and location. The primary purpose of the paper is to begin to build a guide for determining the appropriate model to be used for a particular situation and criteria. When the data pressure profile is available, there is no need for a model since the slope of the data pressure profile gives the pressure gradient, which can be used directly in the gradient wind equation. The data pressure profile can also be fitted to the most appropriate model by various techniques of correlation.


2019 ◽  
Vol 42 ◽  
Author(s):  
Gian Domenico Iannetti ◽  
Giorgio Vallortigara

Abstract Some of the foundations of Heyes’ radical reasoning seem to be based on a fractional selection of available evidence. Using an ethological perspective, we argue against Heyes’ rapid dismissal of innate cognitive instincts. Heyes’ use of fMRI studies of literacy to claim that culture assembles pieces of mental technology seems an example of incorrect reverse inferences and overlap theories pervasive in cognitive neuroscience.


1975 ◽  
Vol 26 ◽  
pp. 395-407
Author(s):  
S. Henriksen

The first question to be answered, in seeking coordinate systems for geodynamics, is: what is geodynamics? The answer is, of course, that geodynamics is that part of geophysics which is concerned with movements of the Earth, as opposed to geostatics which is the physics of the stationary Earth. But as far as we know, there is no stationary Earth – epur sic monere. So geodynamics is actually coextensive with geophysics, and coordinate systems suitable for the one should be suitable for the other. At the present time, there are not many coordinate systems, if any, that can be identified with a static Earth. Certainly the only coordinate of aeronomic (atmospheric) interest is the height, and this is usually either as geodynamic height or as pressure. In oceanology, the most important coordinate is depth, and this, like heights in the atmosphere, is expressed as metric depth from mean sea level, as geodynamic depth, or as pressure. Only for the earth do we find “static” systems in use, ana even here there is real question as to whether the systems are dynamic or static. So it would seem that our answer to the question, of what kind, of coordinate systems are we seeking, must be that we are looking for the same systems as are used in geophysics, and these systems are dynamic in nature already – that is, their definition involvestime.


1979 ◽  
Vol 44 ◽  
pp. 307-313
Author(s):  
D.S. Spicer

A possible relationship between the hot prominence transition sheath, increased internal turbulent and/or helical motion prior to prominence eruption and the prominence eruption (“disparition brusque”) is discussed. The associated darkening of the filament or brightening of the prominence is interpreted as a change in the prominence’s internal pressure gradient which, if of the correct sign, can lead to short wavelength turbulent convection within the prominence. Associated with such a pressure gradient change may be the alteration of the current density gradient within the prominence. Such a change in the current density gradient may also be due to the relative motion of the neighbouring plages thereby increasing the magnetic shear within the prominence, i.e., steepening the current density gradient. Depending on the magnitude of the current density gradient, i.e., magnetic shear, disruption of the prominence can occur by either a long wavelength ideal MHD helical (“kink”) convective instability and/or a long wavelength resistive helical (“kink”) convective instability (tearing mode). The long wavelength ideal MHD helical instability will lead to helical rotation and thus unwinding due to diamagnetic effects and plasma ejections due to convection. The long wavelength resistive helical instability will lead to both unwinding and plasma ejections, but also to accelerated plasma flow, long wavelength magnetic field filamentation, accelerated particles and long wavelength heating internal to the prominence.


1978 ◽  
Vol 48 ◽  
pp. 515-521
Author(s):  
W. Nicholson

SummaryA routine has been developed for the processing of the 5820 plates of the survey. The plates are measured on the automatic measuring machine, GALAXY, and the measures are subsequently processed by computer, to edit and then refer them to the SAO catalogue. A start has been made on measuring the plates, but the final selection of stars to be made is still a matter for discussion.


Author(s):  
J. J. Kelsch ◽  
A. Holtz

A simple solution to the serious problem of specimen contamination in the electron microscope is presented. This is accomplished by the introduction of clean helium into the vacuum exactly at the specimen position. The local pressure gradient thus established inhibits the migration of hydrocarbon molecules to the specimen surface. The high ionization potential of He permits the use of relatively large volumes of the gas, without interfering with gun stability. The contamination rate is reduced on metal samples by a factor of 10.


Sign in / Sign up

Export Citation Format

Share Document