scholarly journals A study of the characterization of CdS/PMMA nanocomposite thin film

2019 ◽  
Vol 14 (29) ◽  
pp. 191-197
Author(s):  
Awras H. Ajil

Nanocomposites of polymer material based on CdS as fillermaterial and poly methyl methacrylate (PMMA) as host matrix havebeen fabricated by chemical spray pyrolysis method on glasssubstrate. CdS particles synthesized by co-precipitation route usingcadimium chloride and thioacetamide as starting materials andammonium hydroxide as precipitating agent. The structure isexamined by X-ray diffraction (XRD), the resultant film hasamorphous structure. The optical energy gap is found to be (4.5,4.06) eV before and after CdS addition, respectively. Electricalactivation energy for CdS/PMMA has two regions with values of0.079 and 0.433 eV.

Author(s):  
Sabah A. Salman ◽  
Ziad T. Khodair ◽  
Sahar J. Abed

Cobalt Ferrite CoFe2O4 thin films have been deposited by chemical spray pyrolysis method (CSP) on glass substrates at different substrate temperatures (300, 350, 400 and 450°C) with an interval of (50°C) using Cobalt Nitrate and Ferric Nitrate as Cobalt and Iron sources respectively, at thickness (400±20) nm. The effect of substrate temperatures change on the optical properties for all prepared films was studied. The optical properties for all the films were studied by recording the transmittance and absorbance spectrum in the range of (300-900) nm. The results showed decreases in transmittance and increases in absorbance with increasing the substrate temperatures. the optical energy gap for allowed direct electronic transition was calculated and it was found that decreases with increasesing the substrate temperatures (2.40-2.22 eV), the Urbach energy increases with increasesing the substrate temperatures and it is values range between (634.6-700.5) meV. The optical constants (absorption coefficient, refractive index, extinction coefficient, real and imaginary parts of dielectric constant and optical conductivity) as a function of photon energy for all prepared films were calculated.


2016 ◽  
Vol 13 (3) ◽  
pp. 593-598
Author(s):  
Baghdad Science Journal

Cadmium Oxide and Bi doped Cadmium Oxide thin films are prepared by using the chemical spray pyrolysis technique a glass substrate at a temperature of (400?C) with volumetric concentration (2,4)%. The thickness of all prepared films is about (400±20) nm. Transmittance and Absorbance spectra are recorded in the wave length ranged (400-800) nm. The nature of electronic transitions is determined, it is found out that these films have directly allowed transition with an optical energy gap of (2.37( eV for CdO and ) 2.59, 2.62) eV for (2% ,4%) Bi doped CdO respectively. The optical constants have been evaluated before and after doping.


2014 ◽  
Vol 11 (2) ◽  
pp. 518-526
Author(s):  
Baghdad Science Journal

Thin films of pure tin mono-sulfide SnS and tin mono-sulfide for (1,2,3,4)% fluorine SnS:F with Thicknesses of (0.85 ±0.05) ?m and (0.45±0.05) ?m respectively were prepared by chemical spray pyrolysis technique. the effect of doping of F on structural and optical properties has been studied. X-Ray diffraction analysis showed that the prepared films were polycrystalline with orthorhombic structure. It was found that doping increased the intensity of diffraction peaks. Optical properties of all samples were studied by recording the absorption and transmission spectrum in range of wave lengths (300-900) nm. The optical energy gap for direct forbidden transition and indirect allowed transition were evaluated It is found that for doping less than 2% the optical energy gap increases as the percentage of doping increases in the samples while for doping more than 2% the values of the optical energy gap decreases as the percentage of doping increases.


Author(s):  
Sami Salmann Chiad

By chemical spray pyrolysis method. The CdO thin film prepared at constant film thickness (350 nm). The prepared films are annealed at a temperature of 450 and 500 °C. The optical properties are calculated from the measurement of UV-Visible spectrophotometer spectrum in the range of (300-900) nm at room temperature. The transmittance, absorption coefficient, extinction coefficient, refractive index, and skin depth are calculated as annealing temperature. The energy gap decreased from 2.52 eV to 2.47 eV when the annealing temperature increased from room temperature to 500 °C.


2021 ◽  
pp. 2204-2212
Author(s):  
Abd alhameed A. Hameed ◽  
Hamid S. AL-Jumaili

      An NH3 gas sensor was prepared from nanocomposite films of indium oxide-copper oxide mixtures with ratios of 0 , 10 , and 20 Vol % of copper oxide. The films were deposited on a glass substrate using chemical spray pyrolysis method (CSP) at 400oC. The structural properties were studied by using X-ray diffraction (XRD) and atomic force microscopy ( AFM). The structural results showed that the prepared thin films are polycrystalline, with nano grain size. By mixing copper oxide with indium oxide, the grain size of the prepared thin films was decreased and the surface roughness was increased. The UV-Visible spectrometer analysis showed that the prepared thin films have high transmittance. This transmittance was decreased by mixing copper oxide with indium oxide. The direct optical energy gap ranged 3.5 - 3 eV, which was decreased with increasing copper oxide concentration. The sensitivity of the prepared gas sensor was measured towards NH3 gas at a concentration of 71ppm with operating temperatures of 100, 150, 200, 250 and 30) oC, according to the change of sensor resistance. This sensitivity of the mixture oxides showed a value of about nine times greater than that of individual indium oxide thin films. The results of the optimum gas sensor properties demonstrated a sensitivity value of 75.06%, response time of 10s, and recovery time of 11 s, at a mixing ratio of 20% of copper oxide and an operating temperature of 200oC.


2019 ◽  
Vol 30 (1) ◽  
pp. 193
Author(s):  
Karrar Mahdi Saleh

In the present work, undoped CdS and doped with iron CdS:Fe+3 thin films have been prepared by chemical spray pyrolysis method on glass substrate with different temperature from cadmium nitrate solution with constant thickness(450 ± 5 nm), and study the effect of the percentage of doping with iron on optical properties of prepared films. The optical properties have been studied from transmittance and absorbance spectral within wavelengths range (380-900 nm). The results showed that all the prepared films has direct electronic transitions and optical energy gap between (2.31-2.44 eV). They also showed that the transmittance and optical energy gap of films prepared from nitrate solution increase with increasing of substrate temperature, then transmittance start downward with the continued increase in temperature (400, 450 oC), and a decrease in the optical energy gap with increasing doping percentage with iron.


2020 ◽  
Vol 1664 ◽  
pp. 012069
Author(s):  
Esraa H Hadi ◽  
Mustafa A Abbsa ◽  
Abdulhussain A Khadayeir ◽  
Ziad M Abood ◽  
Nadir F Habubi ◽  
...  

2019 ◽  
Vol 13 (26) ◽  
pp. 121-127
Author(s):  
Nadia Jasim Ghdeeb

In this work, the optical properties of Cu2S with different thickness(1400, 2400, 4400) Ǻ have been prepared by chemical spray pyrolysis method onto clean glass substrate heated at 283 oC ±2. The effectof thickness on the optical properties of Cu2S has been studied. Itwas found that the optical properties of the electronic transitions onfundamental absorption edge were direct allowed and the value of theoptical energy gap of Cu2S (Eg) for direct transition decreased from(2.4-2.1) eV with increasing of the thickness from (1400 - 4400)Ǻrespectively. Also it was found that the absorption coefficient isincreased with increasing of thicknesses. The optical constants suchas extinction coefficient, refractive index and the imaginary part ofthe dielectric constant have similar termed of variation for theabsorption coefficient.


2020 ◽  
Vol 18 (45) ◽  
pp. 59-67
Author(s):  
Jasim Mohamad Hussain ◽  
Awatif S Jasim ◽  
Kadhim Abdulwahid Aadim

In this study, the effect of grafting with magnesium (Mg) ratios (0.1, 0.3, 0.5) on the structural and optical properties of cadmium oxide films (CdO) was studied, as these films were prepared on glass bases using the method of pulse laser deposition (PLD). The crystallization nature of the prepared membranes was examined by X-ray diffraction technique (XRD), which showed that the synthesis of the prepared membranes is polycrystalline, and (AFM) images also showed that the increased deformation with magnesium led to an increase in the grain size ratio and a decrease in surface roughness, as well as the absorption coefficient was calculated. And the optical energy gap for the prepared membranes, where it was found that the absorption coefficient increases with the increase in the proportion of vaccination and that the energy gap decreases with increasing rates of vaccination.


Sign in / Sign up

Export Citation Format

Share Document