scholarly journals The dispersion in spherical statistical optical potential (SOM) from the interaction of fast neutrons with197Au nucle

2019 ◽  
Vol 17 (40) ◽  
pp. 88-94
Author(s):  
Fatimah Fadhil Abd Ali

A statistical optical potential has been used to analyze andevaluate the neutron interaction with heavy nuclei 197Au at theneutron energy range (1-20 MeV). Empirical formulae of the opticalpotentials parameters are predicted by using ABAREX Code withminimize accuracy compared with experimental bench work data.The total elastic, absorption, shape elastic and total compound crosssections are calculated for different target nuclei and differentincident neutron energies to predict the appropriate opticalparameters that suit the present interaction. Also the dispersionrelation linking between real and imaginary potential is analyzedwith more accuracy. The results indicate the behavior of thedispersion contribution in imaginary potential has a parabolic changeabout the Fermi surface energy while in the real potential it fall withincreasing the neutron energy. Good agreements have been achievedwith the available experimental data

Author(s):  
Iman Tarik Al-Alawy ◽  
Firas Hashem Ahmed

The evaluation is based mainly on the calculations of the nuclear optical model potential and the relevant parameters which are collected and selected from References Input Parameter Library (RIPL-3) which is being developed under the international project coordinated by the International Atomic Energy Agency (IAEA). The analyzing of a complete energy range has been done starting from threshold energy for each reaction. The cross sections are reproduced in fine steps of incident neutron energy with 0.01MeV intervals with their corresponding errors. The recommended cross sections for available experimental data taken from EXFOR library have been calculated for all the considered neutron induced reactions for Dy (Z=66; A=162-164) isotopes. The calculated results are analyzed and compared with the experimental data. The optimized optical potential model parameters give a very good agreement with the experimental data over the energy range 13.4-14.87MeV for neutron induced cross section reactions (n,p) for spherical Dy-162 target element, (n,2H), (n,d), (n,n+p),and (n,p) for spherical Dy-163 target element, and (n,2H) and (n,p) for spherical Dy-164 target element.


2010 ◽  
Vol 25 (21n23) ◽  
pp. 1754-1758
Author(s):  
MASANOBU YAHIRO ◽  
KOSHO MINOMO ◽  
KAZUYUKI OGATA ◽  
YOSHIFUMI R. SHIMIZU ◽  
TAKUMA MATSUMOTO ◽  
...  

This article is composed of three subjects. First, the relation between the method of continuum-discretized coupled channels (CDCC) and the Faddeev theory is clarified to show the validity of CDCC. Second, CDCC is applied to four-body reactions such as (6 He , nn 4 He ) as an example of recent progress in CDCC. Third, we propose a microscopic version of CDCC in which a localized form of the microscopic nucleon-nucleus optical potential is used as an input of CDCC calculation instead of the phenomenological optical potential commonly used. The validity of the Brieva-Rook localization is shown for the proton scattering in a wide incident-energy range.


1956 ◽  
Vol 34 (1) ◽  
pp. 36-42 ◽  
Author(s):  
J. T. Sample

Detailed calculations have been carried out which indicate that the small-angle scattering of fast neutrons by lead depends on the polarization, or spin orientation, of the neutrons. When the scattering of neutrons whose spin vectors point upward is observed in the horizontal plane, more neutrons should be found scattered to the right than to the left. For completely polarized 3.1 Mev. neutrons, the theory predicts a maximum "right to left" intensity ratio of 14.5:1 at a scattering angle of 0.5°, the ratio decreasing to 1.6:1 at 5°, and approaching unity rapidly as the scattering angle increases.


2020 ◽  
Vol 239 ◽  
pp. 03010
Author(s):  
Liyuan Hu ◽  
Yushou Song ◽  
Yingwei Hou ◽  
Huilan Liu

The experimental data of the elastic scattering angular distribution of 17F+12C at 170 MeV is analyzed by the continuum-discretized coupled channels (CDCC) method and the optical model (OM). In the CDCC calculation, the unambiguous optical potential of 16O+12C is used as the input to give the coupling potentials. A very refractive feature is found and two evident Airy minima are predicted at large angles. The one-channel calculation is also performed and gives nearly the same result. In the OM calculations, this optical potential of 16O+12C is used again and adjusted to reproduce the angular distribution of 17F+12C. The Airy oscillation appears again in the calculated angular distribution. These results indicate that the elastic scattering of 17F+12C at 170 MeV has the possibility of the nuclear rainbow phenomenon, which is probably due to the contribution from the 16O core.


2018 ◽  
Vol 64 (5) ◽  
pp. 498
Author(s):  
Hocine Aouchiche

Differential and integral cross sections for elastic scattering of electron by NH3 molecule are investigated for the energy ranging from 10 eV to 20 keV.  The calculations are carried out in the framework of partial wave formalism describing the target molecule by means of one center molecular Hartree-Fock functions.  A spherical complex optical potential used includes a static part – obtained here numerically from quantum calculation – and fine effects like correlation, polarization and exchange potentials. The results obtained in this model point out clearly the role played by the exchange and the correlation-polarization contributions in particular at lower scattering angles and lower incident energies. Both differential and integral cross sections obtained are compared with a large set of experimental data available in the literature and well agreement is found throughout the scattering angles and whole energy range investigated here.


KnE Energy ◽  
2018 ◽  
Vol 3 (1) ◽  
pp. 21
Author(s):  
Yu Penionzhkevich ◽  
Yu Sobolev ◽  
V Samarin ◽  
M Naumenko

The paper presents the results of measurement of the total cross sections for reactions 4,6He + Si and 6,7,9Li + Si in the beam energy range 5−50 A⋅MeV. The enhancements of the total cross sections for reaction 6He + Si compared with reaction 4He + Si, and 9Li + Si compared with reactions 6,7Li + Si have been observed. The performed microscopic analysis of total cross sections for reactions 6He + Si and 9Li + Si based on numerical solution of the time-dependent Schrödinger equation for external neutrons of projectile nuclei 6He and 9Li yielded good agreement with experimental data.


2002 ◽  
Vol 11 (05) ◽  
pp. 425-436 ◽  
Author(s):  
M. Y. H. FARAG ◽  
M. Y. M. HASSAN

The relativistic description of the proton-nucleus elastic scattering can be considered within the framework of a relativistic optical potential model. The elastic scattering of proton with the nuclei 12 C , 16 O , 20 Ne , and 24 Mg at 800 MeV and 1.04 GeV are studied for relativistic and nonrelativistic treatments. The real optical potentials and the differential cross sections of these reactions are calculated. The obtained results are compared with the corresponding results obtained from the calculation depending on the Woods–Saxon optical potential which were adjusted to fit the experimental data. The present results are in good agreement with the experimental data.


The technique of beam superposition is employed in the experimental study of ionization of He+, N+ and 0+ by electrons. The electron energy range extends up to 300 eV. The primary and product ions are mass selected. Relative cross-sections for ionization are obtained as a function of the laboratory energy of the electrons. The experimental data for He+ and N+ are quite consistent with published values of the absolute cross-sections for these systems. By using Thomson’s classical scaling rule for isoelectronic systems, the cross-sections for ionization of O+ are calculated from those for ionization of atomic nitrogen. These values, when normalized to the relative ionization efficiency curve obtained experimentally here, show close overlap over the entire energy range.


Sign in / Sign up

Export Citation Format

Share Document