scholarly journals Development and research of the circuit for measuring the leakage current when testing the insulation with the higher rectified voltage

Author(s):  
R. T. Khazieva ◽  
A. N. Mukhametshin

OBJECT. When developing DC test voltage sources to assess the insulation quality of high-voltage equipment, the task is to measure the leakage current flowing through the test object. METHODS. When solving the problem the authors proposed a technical solution for measuring the current flowing through the test when testing insulation with rectified voltage, which uses a precision resistor, an isolating amplifier, a 2-channel operational amplifier with a unipolar power supply, zero voltage drift, and an ADC of a microcontroller.RESULTS. The article in the course of the study of the stand of the circuit for measuring the leakage current flowing through the tested object when testing the insulation with rectified voltage, an experimental industrial sample was created, which makes it possible to measure the leakage current value in the range from 10 μA to 1000 μA. The use of the developed circuit for measuring the current flowing through the test object when testing the insulation with rectified voltage makes it possible to calculate the DC component of the voltage signal from the alternating signal and in real time, and, therefore, to quickly monitor the current in high-voltage circuits for continuous monitoring. CONCLUSION. So the introduction of this sample will make it possible, on its basis, to create a number of digital measuring microammeters that make it possible to measure the leak-age current in high-voltage test installations for testing the insulation of objects from 15 nF to 200 nF, in the leakage current measurement range from 10 μA to 1000 μA. The results obtained can be used in high voltage technology to study circuits for measuring the leakage current flowing through the test object when testing insulation with rectified voltage.

2009 ◽  
Vol 129 (8) ◽  
pp. 1511-1517
Author(s):  
Nicodimus Retdian ◽  
Jieting Zhang ◽  
Takahide Sato ◽  
Shigetaka Takagi

2020 ◽  
Vol 10 (10) ◽  
pp. 44-51
Author(s):  
Yury Yu. SKOROKHOD ◽  
◽  
Sehgey I. VOL’SKIY ◽  

The power circuit arrangements of on-board high-voltage static converters fed from a 3000 V AC single-phase network that in the general case produce multi-channel AC and DC output voltages are considered. The basic technical requirements posed to such converters are formulated. The general structural diagram of high-voltage converters with improved electric power consumption quality is given. Possible power circuit arrangements for the high-voltage converter input unit based on single-phase input current correction devices are considered. A classification and criteria for comparative evaluation of the possible power circuit arrangements of these devices are proposed. The information presented in the article will be of interest for specialists engaged in designing on-board electrical systems involving high-voltage converters that must comply with strict requirements for the quality of consumed single-phase input current.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mirjam Pot ◽  
Nathalie Kieusseyan ◽  
Barbara Prainsack

AbstractThe application of machine learning (ML) technologies in medicine generally but also in radiology more specifically is hoped to improve clinical processes and the provision of healthcare. A central motivation in this regard is to advance patient treatment by reducing human error and increasing the accuracy of prognosis, diagnosis and therapy decisions. There is, however, also increasing awareness about bias in ML technologies and its potentially harmful consequences. Biases refer to systematic distortions of datasets, algorithms, or human decision making. These systematic distortions are understood to have negative effects on the quality of an outcome in terms of accuracy, fairness, or transparency. But biases are not only a technical problem that requires a technical solution. Because they often also have a social dimension, the ‘distorted’ outcomes they yield often have implications for equity. This paper assesses different types of biases that can emerge within applications of ML in radiology, and discusses in what cases such biases are problematic. Drawing upon theories of equity in healthcare, we argue that while some biases are harmful and should be acted upon, others might be unproblematic and even desirable—exactly because they can contribute to overcome inequities.


2010 ◽  
Vol 20-23 ◽  
pp. 1385-1390
Author(s):  
Hong Bin Yang ◽  
Xiao Hong Wang ◽  
Zong De Fang

To develop a good quality of hypoid gear drive, the authors test the vibration and noise of two kinds of hypoid gear drives under different working conditions. The test object is a pair of hypoid gear drive used in the back axle of one minivan and a designed hypoid gear drive with high teeth based on the former. The results indicate that the hypoid gear drive with high teeth has lower vibration and noise.


1990 ◽  
Vol 201 ◽  
Author(s):  
F. Namavar ◽  
E. Cortesi ◽  
N. M. Kalkhoran ◽  
J. M. Manke ◽  
B. L. Buchanan

AbstractSubstantial reduction of defect density in silicon-on-sapphire (SOS) material is required to broaden its range of applications to include CMOS and bipolar devices. In recent years, solid phase epitaxy and regrowth (SPEAR) and double solid phase epitaxy (DSPE) processes were applied to SOS to reduce the density of defects in the silicon. These methods result in improved carrier mobilities, but also in increased leakage current, even before irradiation. In a radiation environment, this material has a large increase in radiation induced back channel leakage current as compared to standard wafers. In other words, the radiation hardness quality of the SOS declines when the crystalline quality of the Si near the sapphire interface is improved.In this paper, we will demonstrate that Ge implantation, rather than Si implantation normally employed in DSPE and SPEAR processes, is an efficient and more effective way to reduce the density of defects near the surface silicon region without improving the Si/sapphire interface region. Ge implantation may be used to engineer defects in the Si/sapphire interface region to eliminate back channel leakage problems.


2003 ◽  
Vol 37 (12) ◽  
pp. 1425-1427 ◽  
Author(s):  
A. V. Rozhkov ◽  
V. A. Kozlov

Sign in / Sign up

Export Citation Format

Share Document