Thermophysical properties of glass-ceramic material during thermal insulation of pipelines of heating mains and utilities

2020 ◽  
Vol 11 ◽  
pp. 45-51
Author(s):  
A. S. Apkaryan ◽  
◽  
S. N. Kulkov ◽  
◽  
◽  
...  

It is proposed to use porous heat-insulating glass-ceramic material (SCM) in the form of segments based on glass, plasticizer, organic additives and a gas generator for thermal insulation of pipelines of heating mains and utilities. Research on the use of SCM in pipelines was carried out according to the key methodology for studying new materials: composition, structure, properties, their changes under the influence of external factors, application. The basis for determining the effectiveness of thermal insulation materials for thermal insulation of pipes was on the physical and technical characteristics of the coolant, pipes and thermal insulation materials. During the study, heat losses and thermal resistances through the insulated surface of the supply and return pipelines of heat networks were determined when installed on the surface. When calculating the heat loss through the pipe using various heat insulators, the layer thickness was assumed to be the same value. Studies have shown that when using a shell made of granular SCM, the heat loss transmitted by thermal conductivity is 1.36 times less than that of a vermiculite shell, 2.45 times than that of mineral wool segments and 2.11 times than that of brand 500 sovelite shells. The use of products made of granular glass-ceramic material (SCM) significantly reduces heat loss and the thickness of the heat-insulating layer of pipelines, and saves fuel and energy resources.

2021 ◽  
pp. 18-27
Author(s):  
M.V. Abrahamyan ◽  
B.V. Movsisyan ◽  
R.A. Avetyan ◽  
G.H. Torosyan

In recent decades, materials with high thermal resistance, refractory, non-toxic, with high mechanical characteristics, durable, affordable easy-to-install thermal insulation materials are of great interest. Durability of available thermal insulating materials, for example cotton insulators is from 10 to 20 years, foam is from 7 to 10 years. During burning process of foam plastics, high-toxic material called phosgene is released. At the same time, fungus forms during the process, and it has adhesion incompatibility with cement. Mineral wool decomposes over time, turning into powder, and the installation of external thermal insulation materials in buildings requires surface finishing to protect it from direct weathering, which incurs additional costs. Recently, composite glasses, glass-crystalline materials synthesized from slag-ash wastes of rocks are in great demand. The goal of this research is to study coal and solid waste of coal pyrolysis as a raw material for the foam glass production. In this work, the chemical, phase and mineralogical composition of coal from the Magavuz deposit in the Republic of Artsakh and solid residues of its catalytic pyrolysis have been studied by the modern methods of analysis. Based on the results, a heat-insulating material has been developed, in which pyrolysis waste also plays the role of a gas generator. The selected heat treatment mode ensures the production of heat-insulating foam with high porosity, uniformly distributed in the volume, with sufficient mechanical properties.


2012 ◽  
Vol 93 ◽  
pp. 104-112 ◽  
Author(s):  
F.A. López ◽  
M.I. Martín ◽  
F.J. Alguacil ◽  
J. Ma. Rincón ◽  
T.A. Centeno ◽  
...  

Author(s):  
Jiří Maděra ◽  
Jan Kočí ◽  
Václav Kočí

Computational modeling represents useful tool for the assessment of newly designed or refurbished building materials and structures. Especially, when complex buildings elements need to be assessed from a hygrothermal point of view, the computational modeling is the right approach with desired power and accuracy. In this paper a historical wall element is investigated using two-dimensional simulation in order to study the effect of application of several insulation materials in various scenarios. In total two insulation materials are investigated (mineral wool, wood fiber boards) that are applied in three different scenarios. All simulations are performed under real climatic load. The results of the computational simulations reveal potential weak points in system application and can provide engineers and designers with valuable recommendations and practical information. The best results were obtained for thermal insulation from mineral wool. On the other hand, an improper system application can lead to a significant devaluation of the beneficial effects on the thermal performance of the studied brick element.


2008 ◽  
Vol 22 (5) ◽  
pp. 999-1003 ◽  
Author(s):  
Vladimir I. Vereshagin ◽  
Svetlana N. Sokolova

2019 ◽  
Vol 10 (2) ◽  
pp. 78-91
Author(s):  
A. V Bolotin ◽  
S. M Sergeev ◽  
A. A Lunegova ◽  
E. A Kochetkova

Modern technologies are not standing still, and scientists are trying not only to invent new building materials, but also to find non-standard use of various raw materials that were previously considered unsuitable for use. Innovative technologies are actively used for modern construction of buildings, in particular, some types of new materials are used in the construction of various facilities. This is especially true in areas where it is not possible to import or use ordinary building materials for various reasons. Often, when designing a building, developers are wondering whether it is worth making the house warm during construction, and which insulation for the walls of the house is better to choose. This article addresses the question of which insulation for walls is most suitable for construction. The most common are mineral insulation, which are represented on the market today in the form of basalt slabs, fiberglass, etc. They have such advantages as low thermal conductivity, good thermal insulation and vapor permeability. The article presents a table with comparative performance characteristics of a mineral wool stone slab and a fiberglass slab. Stone or basalt wool has several advantages. It is able to withstand significant temperatures and temperature changes, the mats are easy to transport, convenient to install. In our opinion, a serious alternative to basalt in the production of thermal insulation materials is volcanic ash. One of the main features of volcanic ash are its building qualities, such as good thermal insulation and an environmentally friendly composition. Since here we are considering the possibility of producing insulation materials based on volcanic ash, we performed a thermal calculation of the enclosing structures. Also in the tables are the costs of transportation of volcanic ash from the field to the point of the proposed production of insulating material. Volcanic ash can be widely used in countries with high volcanic activity as an inexpensive raw material for the manufacture of building materials. It does not require additional processing and has a number of useful properties.


Sign in / Sign up

Export Citation Format

Share Document