Improving the Quality of EDTA-treated Blood Specimens from Mice

Author(s):  
Catherine J Layssol-Lamour ◽  
Fanny A Granat ◽  
Ambrine M Sahal ◽  
Jean-Pierre D Braun ◽  
Catherine Trumel ◽  
...  

Nonterminal blood sampling in laboratory mice is a very common procedure. With the goal of improving animal welfare, different sampling sites and methods have been compared but have not achieved a consensus. Moreover, most of these studies overlooked the quality of blood specimens collected. The main preanalytical concern with EDTA-treated blood specimens for hematology analyses is platelet aggregation, which is known to cause analytical errors. Our objective was to find a nonterminal blood sampling method with minimal adverse effects on mice and few or no platelet aggregates. We tested and compared 2 collection sites, 4 sampling methods, and 3 antithrombotic drugs in 80 C57BL6/j male and female mice by evaluating platelet aggregates on blood smears and platelet, WBC, and RBC counts. In addition, the blood collection process was carefully evaluated, and adverse effects were recorded. Platelet aggregation was lower in specimens collected from the jugular vein than from the facial vein, with no effect of the sampling device or the presence of an antithrombotic additive. Highly aggregated specimens were significantly associated with lower platelet counts, whereas aggregation had no effect on WBC or RBC counts. Adverse events during sampling were significantly associated with more numerous platelet aggregates. The jugular vein is thus a satisfactory sampling site in mice in terms of both animal welfare and low platelet aggregation. Using antithrombotic agents appears to be unnecessary, whereas improving sampling conditions remains a key requirement to ensure the quality of EDTA-treated blood specimens from mice.

1994 ◽  
Vol 71 (01) ◽  
pp. 091-094 ◽  
Author(s):  
M Cattaneo ◽  
B Akkawat ◽  
R L Kinlough-Rathbone ◽  
M A Packham ◽  
C Cimminiello ◽  
...  

SummaryNormal human platelets aggregated by thrombin undergo the release reaction and are not readily deaggregated by the combination of inhibitors hirudin, prostaglandin E1 (PGE1) and chymotrypsin. Released adenosine diphosphate (ADP) plays an important role in the stabilization of thrombin-induced human platelet aggregates. Since ticlopidine inhibits the platelet responses to ADP, we studied thrombin-induced aggregation and deaggregation of 14C-serotonin-labeled platelets from 12 patients with cardiovascular disease before and 7 days after the oral administration of ticlopidine, 250 mg b.i.d. Before and after ticlopidine, platelets stimulated with 1 U/ml thrombin aggregated, released about 80–90% 14C-serotinin and did not deaggregate spontaneously within 5 min from stimulation. Before ticlopidine, hirudin (5× the activity of thrombin) and PGE1 (10 μmol/1) plus chymotrypsin (10 U/ml) or plasmin (0.06 U/ml), added at the peak of platelet aggregation, caused slight or no platelet deaggregation. After ticlopidine, the extent of platelet deaggregation caused by the same inhibitors was significantly greater than before ticlopidine. The addition of ADP (10 μmol/1) to platelet suspensions 5 s after thrombin did not prevent the deaggregation of ticlopidine-treated platelets. Thus, ticlopidine facilitates the deaggregation of thrombin-induced human platelet aggregates, most probably because it inhibits the effects of ADP on platelets.


1969 ◽  
Vol 22 (03) ◽  
pp. 496-507 ◽  
Author(s):  
W.G van Aken ◽  
J Vreeken

SummaryCarbon particles cause platelet aggregation in vitro and in vivo. Prior studies established that substances which modify thrombocyte aggregation also influence the rate at which carbon is cleared from the blood.This study was performed in order to elucidate the mechanism by which the carbon-platelet aggregates specifically accumulate in the RES.Activation of fibrinolysis by urokinase or streptokinase reduced the carbon clearance rate, probably due to generated fibrinogen degradation products (FDP). Isolated FDP decreased the carbon clearance and caused disaggregation of platelets and particles in vitro. Inhibition of fibrinolysis by epsilon-amino-caproic acid (EACA), initially accelerated the disappearance of carbon and caused particle accumulation outside the RES, predominantly in the lungs. It is supposed that platelet aggregation and locally activated fibrinolysis act together in the clearance of particles. In the normal situation the RES with its well known low fibrinolytic activity, becomes the receptor of the particles.


1976 ◽  
Vol 36 (02) ◽  
pp. 376-387 ◽  
Author(s):  
Teruhiko Umetsu ◽  
Kazuko Sanai ◽  
Tadakatsu Kato

SummaryThe effects of bupranolol, a new β-blocker, on platelet functions were investigated in vitro in rabbits and humans as compared with propranolol, a well-known β-blocker. At first, the effect of adrenaline on ADP-induced rabbit platelet aggregation was studied because adrenaline alone induces little or no aggregation of rabbit platelets. Enhancement of ADP-induced rabbit platelet aggregation by adrenaline was confirmed, as previously reported by Sinakos and Caen (1967). In addition the degree of the enhancement was proved to be markedly affected by the concentration of ADP and to increase with decreasing concentration of ADP, although the maximum aggregation (percent) was decreased.Bupranolol and propranolol inhibited the (adrenaline-ADP-)induced aggregation of rabbit platelets, bupranolol being approximately 2.4–3.2 times as effective as propranolol. Bupranolol stimulated the disaggregation of platelet aggregates induced by a combination of adrenaline and ADP, but propranolol did not. Platelet adhesion in rabbit was also inhibited by the β-blockers and bupranolol was more active than propranolol. With human platelets, aggregation induced by adrenaline was inhibited by bupranolol about 2.8–3.3 times as effectively as propranolol.From these findings. We would suggest that bupranolol might be useful for prevention or treatment of thrombosis.


1973 ◽  
Vol 30 (01) ◽  
pp. 178-190 ◽  
Author(s):  
Itsuro Kobayashi ◽  
Paul Didisheim

SummaryADP, AMP, or ATP was injected rapidly intravenously in rats. ADP injection resulted in the f olio wing transient changes: a drop in platelet count, a rise in central venous pressure, a fall in carotid arterial PO2, bradycardia, arrhythmia, flutter-fibrillation, and arterial hypotension. AMP and ATP produced some of these same effects; but except for hypotension, their frequency and severity Avere much less than those following ADP.Prior intravenous administration of acetylsalicylic acid or pyridinolcarbamate, two inhibitors of the second wave of ADP-induced platelet aggregation in vitro, significantly reduced the frequency and severity of all the above ADP-induced changes except hypotension. These observations suggest that many of the changes (except hypotension) observed to follow ADP injection are produced by platelet aggregates which lodge transiently in various microcirculatory beds then rapidly disaggregate and recirculate.


1977 ◽  
Vol 38 (03) ◽  
pp. 0640-0651 ◽  
Author(s):  
B. V Chater ◽  
A. R Williams

SummaryPlatelets were found to aggregate spontaneously when exposed to ultrasound generated by a commercial therapeutic device. At a given frequency, aggregation was found to be a dose-related phenomenon, increasing intensities of ultrasound inducing more extensive and more rapid aggregation. At any single intensity, the extent aggregation was increased as the frequency of the applied ultrasound was decreased (from 3.0 to 0.75 MHz).Ultrasound-induced platelet aggregation was found to be related to overall platelet sensitivity to adenosine diphosphate. More sensitive platelets were found to aggregate spontaneously at lower intensities of sound, and also the maximum extent of aggregation was found to be greater. Examination of ultrasound-induced platelet aggregates by electron microscopy demonstrated that the platelets had undergone the release reaction.The observation that haemoglobin was released from erythrocytes in whole blood irradiated under identical physical conditions suggests that the platelets are being distrupted by ultrasonic cavitation (violent gas/bubble oscillation).It is postulated that overall platelet aggregation is the result of two distinct effects. Firstly, the direct action of ultrasonic cavitation disrupts a small proportion of the platelet population, resulting in the liberation of active substances. These substances produce aggregation, both directly and indirectly by inducing the physiological release reaction in adjacent undamaged platelets.


1965 ◽  
Vol 13 (01) ◽  
pp. 065-083 ◽  
Author(s):  
Shirley A. Johnson ◽  
Ronaldo S. Balboa ◽  
Harlan J. Pederson ◽  
Monica Buckley

SummaryThe ultrastructure of platelet aggregation in vivo in response to bleeding brought about by transection of small mesenteric vessels in rats and guinea pigs has been studied. Platelets aggregate, degranulate and separating membranes disappear in parallel with fibrin appearance which is first seen at several loci after 30 seconds of bleeding. About 40 per cent of the electron opaque granules, some of which contain platelet factor 3 have disappeared after one minute of bleeding while the electron lucent granules increase by 70 per cent suggesting that some of them may be empty vesicles. Most of the platelet aggregates of the random type disappear leaving clumped red blood cells entrapped by a network of fibrin fibers which emanate from the remains of platelet aggregates of the rosette type to maintain hemostasis.


1986 ◽  
Vol 55 (01) ◽  
pp. 136-142 ◽  
Author(s):  
K J Kao ◽  
David M Shaut ◽  
Paul A Klein

SummaryThrombospondin (TSP) is a major platelet secretory glycoprotein. Earlier studies of various investigators demonstrated that TSP is the endogenous platelet lectin and is responsible for the hemagglutinating activity expressed on formaldehyde-fixed thrombin-treated platelets. The direct effect of highly purified TSP on thrombin-induced platelet aggregation was studied. It was observed that aggregation of gel-filtered platelets induced by low concentrations of thrombin (≤0.05 U/ml) was progressively inhibited by increasing concentrations of exogenous TSP (≥60 μg/ml). However, inhibition of platelet aggregation by TSP was not observed when higher than 0.1 U/ml thrombin was used to activate platelets. To exclude the possibility that TSP inhibits platelet aggregation by affecting thrombin activation of platelets, three different approaches were utilized. First, by using a chromogenic substrate assay it was shown that TSP does not inhibit the proteolytic activity of thrombin. Second, thromboxane B2 synthesis by thrombin-stimulated platelets was not affected by exogenous TSP. Finally, electron microscopy of thrombin-induced platelet aggregates showed that platelets were activated by thrombin regardless of the presence or absence of exogenous TSP. The results indicate that high concentrations of exogenous TSP (≥60 μg/ml) directly interfere with interplatelet recognition among thrombin-activated platelets. This inhibitory effect of TSP can be neutralized by anti-TSP Fab. In addition, anti-TSP Fab directly inhibits platelet aggregation induced by a low (0.02 U/ml) but not by a high (0.1 U/ml) concentration of thrombin. In conclusion, our findings demonstrate that TSP is functionally important for platelet aggregation induced by low (≤0.05 U/ml) but not high (≥0.1 U/ml) concentrations of thrombin. High concentrations of exogenous TSP may univalently saturate all its platelet binding sites consequently interfering with TSP-crosslinking of thrombin-activated platelets.


Sign in / Sign up

Export Citation Format

Share Document