EVOLUTION OF NEMATODE DEFECATION MOTOR PROGRAM

Author(s):  
G.A. SLIVKO-KOLTCHIK ◽  
◽  
V.P. KUZNETSOV ◽  
D.A. VORONOV ◽  
Y.V. PANCHIN ◽  
...  
Keyword(s):  
2021 ◽  
pp. 003151252110100
Author(s):  
Liangshan Dong ◽  
Bo Shen ◽  
YanLi Pang ◽  
Mingting Zhang ◽  
Yuan Xiang ◽  
...  

The current study evaluated the effectiveness of a motor program that specifically targeted fundamental motor skills (FMS) in children with ASD. The experimental group (n=21) participated in a 9-week program with motor instructions for 80 minutes/day, three days/week, while the control group (n=29) did not participate in the program. We measured FMS (using the Test of Gross Motor Development-3) one-week before, one-week after, and two-months after the program. Children in the experimental group had significantly larger FMS improvements than the controls on both locomotor and ball skills immediately following the program, and these participants showed continuous improvement on locomotor, but not ball skills, at 2-months follow-up. In individual analyses, 80% of children in the experimental group versus 29% of children in the control group showed continuous locomotor skills improvement beyond their pre-test levels. These findings highlight the importance of both a long-term motor development intervention and an individualized approach for evaluating improved FMS among children with ASD.


2020 ◽  
pp. 174702182098552
Author(s):  
Lucette Toussaint ◽  
Aurore Meugnot ◽  
Christel Bidet-Ildei

The present experiment aimed to gain more information on the effect of limb nonuse on the cognitive level of actions and, more specifically, on the content of the motor program used for grasping an object. For that purpose, we used a hand-grasping laterality task that is known to contain concrete information on manipulation activity. Two groups participated in the experiment: an immobilized group, including participants whose right hand and arm were fixed with a rigid splint and an immobilization vest for 24 hours, and a control group, including participants who did not undergo the immobilization procedure. The main results confirmed a slowdown of sensorimotor processes, which is highlighted in the literature, with slower response times when the participants identified the laterality of hand images that corresponded to the immobilized hand. Importantly, the grip-precision effect, highlighted by slower response times for hands grasping a small sphere versus a large sphere, is impaired by 24 hours of limb nonuse. Overall, this study provided additional evidence of the disengagement of sensorimotor processes due to a short period of limb immobilization.


Life ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 267
Author(s):  
Gabriela Angelova ◽  
Tereza Skodova ◽  
Terezie Prokopiusova ◽  
Magdalena Markova ◽  
Natalia Hruskova ◽  
...  

Background: Only few studies have monitored the potential of physical activity training and physical therapy to modulate the reaction of the endocrine system. In this study, the effect of neuroproprioceptive facilitation and inhibition physical therapy on clinical outcomes and neuroactive steroids production in people with multiple sclerosis was evaluated. Moreover, we were interested in the factors that influence the treatment effect. Methods: In total, 44 patients with multiple sclerosis were randomly divided into two groups. Each group underwent a different kind of two months ambulatory therapy (Motor program activating therapy and Vojta’s reflex locomotion). During the following two months, participants were asked to continue the autotherapy. Primary (serum level of cortisol, cortisone, 7α-OH-DHEA, 7β-OH-DHEA, 7-oxo-DHEA, DHEA) and secondary (balance, cognition and patient-reported outcomes) outcomes were examined three times (pre, post, and washout assessments). Results: In both groups, there is a decreasing trend of 7-oxo-DHEA concentration in post-assessment and 7β-OH-DHEA in washout versus pre-assessment. A higher impact on neuroactive steroids is visible after Vojta’s reflex locomotion. As for clinical outcomes, the Paced Auditory Serial Addition Test and Multiple Sclerosis Impact Scale significantly improved between post-assessment and washout assessment. The improvement was similar for both treatments. Conclusions: Neuroproprioceptive facilitation and inhibition improved the clinical outcomes and led to non-significant changes in neuroactive steroids. Trial registration (NCT04379193).


1996 ◽  
Vol 8 (6) ◽  
pp. 603-625 ◽  
Author(s):  
Pieter R. Roelfsema ◽  
Andreas K. Engel ◽  
Peter König ◽  
Wolf Singer

Recent experimental results in the visual cortex of cats and monkeys have suggested an important role for synchronization of neuronal activity on a millisecond time scale. Synchronization has been found to occur selectively between neuronal responses to related image components. This suggests that not only the firing rates of neurons but also the relative timing of their action potentials is used as a coding dimension. Thus, a powerful relational code would be available, in addition to the rate code, for the representation of perceptual objects. This could alleviate difficulties in the simultaneous representation of multiple objects. In this article we present a set of theoretical arguments and predictions concerning the mechanisms that could group neurons responding to related image components into coherently active aggregates. Synchrony is likely to be mediated by synchronizing connections; we introduce the concept of an interaction skeleton to refer to the subset of synchronizing connections that are rendered effective by a particular stimulus configuration. If the image is segmented into objects, these objects can typically be segmented further into their constituent parts. The synchronization behavior of neurons that represent the various image components may accurately reflect this hierarchical clustering. We propose that the range of synchronizing interactions is a dynamic parameter of the cortical network, so that the grain of the resultant grouping process may be adapted to the actual behavioral requirements. It can be argued that different aspects of purposeful behavior rely on separable processes by which sensory input is transformed into adjustments of motor activity. Indeed, neurophysiological evidence has suggested separate processing streams originating in the primary visual cortex for object identification and sensorimotor coordination. However, such a separation calls for a mechanism that avoids interference effects in the presence of multiple objects, or when multiple motor programs are simultaneously prepared. In this article we suggest that synchronization between responses of neurons in both the visual cortex and in areas that are involved in response selection and execution might allow for a selective routing of sensory information to the appropriate motor program.


2007 ◽  
Vol 23 (4) ◽  
pp. 261-274 ◽  
Author(s):  
Adriana M. Degani ◽  
Alessander Danna-Dos-Santos ◽  
Mark L. Latash

We tested the hypothesis that a sequence of mechanical events occurs preceding a step that scales in time and magnitude as a whole in a task-specific manner, and is a reflection of a “motor program.” Young subjects made a step under three speed instructions and four tasks: stepping straight ahead, down a stair, up a stair, and over an obstacle. Larger center-of-pressure (COP) and force adjustments in the anteriorposterior direction and smaller COP and force adjustments in the mediolateral direction were seen during stepping forward and down a stair, as compared with the tasks of stepping up a stair and over an obstacle. These differences were accentuated during stepping under the simple reaction time instruction. These results speak against the hypothesis of a single motor program that would underlie postural preparation to stepping. They are more compatible with the reference configuration hypothesis of whole-body actions.


2013 ◽  
Vol 109 (9) ◽  
pp. 2327-2334 ◽  
Author(s):  
Andrew M. Dacks ◽  
Klaudiusz R. Weiss

Neurotransmitters can have diverse effects that occur over multiple time scales often making the consequences of neurotransmission difficult to predict. To explore the consequences of this diversity, we used the buccal ganglion of Aplysia to examine the effects of GABA release by a single interneuron, B40, on the intrinsic properties and motor output of the radula closure neuron B8. B40 induces a picrotoxin-sensitive fast IPSP lasting milliseconds in B8 and a slow EPSP lasting seconds. We found that the excitatory effects of this slow EPSP are also mediated by GABA. Together, these two GABAergic actions structure B8 firing in a pattern characteristic of ingestive programs. Furthermore, we found that repeated B40 stimulation induces a persistent increase in B8 excitability that was occluded in the presence of the GABA B receptor agonist baclofen, suggesting that GABA affects B8 excitability over multiple time scales. The phasing of B8 activity during the feeding motor programs determines the nature of the behavior elicited during that motor program. The persistent increase in B8 excitability induced by B40 biased the activity of B8 during feeding motor programs causing the motor programs to become more ingestive in nature. Thus, a single transmitter released from a single interneuron can have consequences for motor output that are expressed over multiple time scales. Importantly, despite the differences in their signs and temporal characteristics, the three actions of B40 are coherent in that they promote B8 firing patterns that are characteristic of ingestive motor outputs.


2009 ◽  
Vol 3 (4) ◽  
Author(s):  
William K. Durfee ◽  
Samantha A. Weinstein ◽  
Ela Bhatt ◽  
Ashima Nagpal ◽  
James R. Carey

Current theories of stroke rehabilitation point toward paradigms of intense concentrated use of the afflicted limb as a means for motor program reorganization and partial function restoration. A home-based system for stroke rehabilitation that trains recovery of hand function by a treatment of concentrated movement was developed and tested. A wearable goniometer measured finger and wrist motions in both hands. An interface box transmitted sensor measurements in real-time to a laptop computer. Stroke patients used joint motion to control the screen cursor in a one-dimensional tracking task for several hours a day over the course of 10–14 days to complete a treatment of 1800 tracking trials. A telemonitoring component enabled a therapist to check in with the patient by video phone to monitor progress, to motivate the patient, and to upload tracking data to a central file server. The system was designed for use at home by patients with no computer skills. The system was placed in the homes of 20 subjects with chronic stroke and impaired finger motion, ranging from 2–305 mi away from the clinic, plus one that was a distance of 1057 miles. Fifteen subjects installed the system at home themselves after instruction in the clinic, while nine required a home visit to install. Three required follow-up visits to fix equipment. A post-treatment telephone survey was conducted to assess ease of use and most responded that the system was easy to use. Functional improvements were seen in the subjects enrolled in the formal treatment study, although the treatment period was too short to trigger cortical reorganization. We conclude that the system is feasible for home use and that tracking training has promise as a treatment paradigm.


2003 ◽  
Vol 89 (2) ◽  
pp. 648-656 ◽  
Author(s):  
Cyril Schneider ◽  
Charles Capaday

When untrained subjects walk backward on a treadmill the amplitude of the soleus H-reflex in midswing is equal to or exceeds the value in stance. This is a surprising result because during the swing phase of backward walking the soleus is inactive and its antagonist, the tibialis anterior, is active. We suggested that the high amplitude of the soleus H-reflex in late swing reflects task uncertainties, such as estimating the moment of foot contact with the ground and losing balance. In support of this idea we show that when untrained subjects held on to handrails the unexpected high-amplitude H-reflex during midswing was no longer present. We therefore asked whether daily training at this task without grasping the handrails would adaptively modify the H-reflex modulation pattern. In this event, within 10 days of training for 15 min daily, the anticipatory reflex activity at the beginning of training was gradually abated as the subjects reported gaining confidence at the task. However, when adapted subjects were made to walk backward with their eyes shut, the anticipatory reflex activity in midswing returned immediately. The reflex changes as a result of training were not due to changes in the motor activity or kinematics; they are likely part of the motor program controlling backward walking. This adaptive phenomenon may prove to be a useful model for studying the neural mechanisms of motor learning and adaptive plasticity in humans and may be relevant to rehabilitation programs for neurological patients.


Sign in / Sign up

Export Citation Format

Share Document