scholarly journals INVESTIGATION OF THE INFLUENCE OF TEMPERATURE INCREASE ON THE STRUCTURAL STATE OF LOW-CARBON LOW-ALLOY STEEL

Author(s):  
V. BOLSHAKOV ◽  
Yuk. HEZENTSVEI

 Problem statement. The development and implementation of low-carbon low-alloy steels of high strength in the structural elements of blast furnaces, which will operate in conditions of heating to high temperatures is an urgent problem and can give a significant effect during the operation of buildings and structures.. Purpose of the article. establishing changes in the structural state of low-carbon low-alloy steels depending on the temperature rise. Conclusion. Conventionally, the temperatures at which the studied steels can be operated can be divided into two levels: the temperature below which no significant structural changes are detected; temperature at which significant structural changes are observed, which lead to a decrease in the reliability of structures. The presence of two levels associated with both the development of diffusion processes and the ability of the structural state to resist the effects of temperature stresses (structural stability). The structural stability of steel with increasing temperature is due to the processes that bring the system closer to the position of thermodynamic equilibrium compared to low temperature (structural state at room temperature), which is usually optimal in terms of performance. Such changes include the processes of recrystallization, coagulation of secretions and other phase transformations that lead to changes in the macro- and microstructure that impair the performance properties of the material. At relatively high temperatures, these processes occur at a significant rate, as a result of which they are crucial in limiting the possibility of using this material.

The demand for large diameter gas line pipe with high yield strength and high notch toughness has led to increased research in high strength low alloy steels. Physical metallurgists have developed both a fundamental and an empirical understanding of the properties and microstructures of ferrite pearlite steels. As specifications become more rigorous, alternative microstructures (low carbon bainite or tempered bainite and martensite) are being used in line pipe. There is a definite need for metallurgists to develop a clearer understanding of the interrelationships between their properties, microstructures, and processing before these alternatives are completely accepted for use in line pipe.


2021 ◽  
pp. 143-157
Author(s):  
Alexander Scherbakov ◽  
Anna Babanina ◽  
Elena Kuzbagarova ◽  
Artur Kuzbagarov

2020 ◽  
Vol 140 ◽  
pp. 105849
Author(s):  
Zheng-Ming Su ◽  
Pai-Chen Lin ◽  
Wei-Jen Lai ◽  
Jwo Pan ◽  
Guan-Ju Cheng ◽  
...  

Author(s):  
L.J. Chen ◽  
H.C. Cheng ◽  
J.R. Gong ◽  
J.G. Yang

For fuel savings as well as energy and resource requirement, high strength low alloy steels (HSLA) are of particular interest to automobile industry because of the potential weight reduction which can be achieved by using thinner section of these steels to carry the same load and thus to improve the fuel mileage. Dual phase treatment has been utilized to obtain superior strength and ductility combinations compared to the HSLA of identical composition. Recently, cooling rate following heat treatment was found to be important to the tensile properties of the dual phase steels. In this paper, we report the results of the investigation of cooling rate on the microstructures and mechanical properties of several vanadium HSLA steels.The steels with composition (in weight percent) listed below were supplied by China Steel Corporation: 1. low V steel (0.11C, 0.65Si, 1.63Mn, 0.015P, 0.008S, 0.084Aℓ, 0.004V), 2. 0.059V steel (0.13C, 0.62S1, 1.59Mn, 0.012P, 0.008S, 0.065Aℓ, 0.059V), 3. 0.10V steel (0.11C, 0.58Si, 1.58Mn, 0.017P, 0.008S, 0.068Aℓ, 0.10V).


Alloy Digest ◽  
1979 ◽  
Vol 28 (2) ◽  

Abstract UNIFLUX V90 is a continuous flux-cored welding electrode (wire) developed to weld high-strength low-alloy steels, but it may be used to weld other low-alloy steels and carbon steels. It is used to deposit typically 2.40% nickel steel weld metal with good low-temperature impact properties. Welding is protected by a shielding atmosphere of either 75% argon-25% carbon dioxide or 100% carbon dioxide. Uniflux V90 is used widely in shipbuilding and other fabricating industries. It provides around 88,000 psi tensile strength and around 26 food-pounds Charpy V-notch impact at 60 F. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as heat treating, machining, and joining. Filing Code: SA-355. Producer or source: Unicore Inc., United Nuclear Corporation.


Alloy Digest ◽  
2016 ◽  
Vol 65 (1) ◽  

Abstract SPARTAN II (HSLA-100) is one of the family of Spartan high strength (>690 MPa, or >100 ksi, minimum yield strength), high toughness, improved weldability steels, which are alternatives to traditional quenched and tempered alloy steels. The Spartan family of steels are low carbon, copper precipitation hardened steels. Spartan II has improved yield strength compared to Spartan I. This datasheet provides information on composition, physical properties, microstructure, tensile properties. It also includes information on forming and joining. Filing Code: SA-738. Producer or source: ArcelorMittal USA.


Alloy Digest ◽  
1983 ◽  
Vol 32 (8) ◽  

Abstract TRI-MARK TM-115 is a gas-shielded flux-cored welding electrode for continuous high deposition are welding. It is designed specifically for semiautomatic and automatic arc welding of high-strength low-alloy steels and quenched-and-tempered steels. This gas-sheilded tubular wire can be used for single and multiple-pass welding. It has outstanding low-temperature impact properties. Its applications including mining equipment, large vehicles and similar items. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as heat treating, machining, and joining. Filing Code: SA-392. Producer or source: Tri-Mark Inc..


Alloy Digest ◽  
1983 ◽  
Vol 32 (4) ◽  

Abstract TRI-MARK TM-811N2 is a flux-cored welding electrode for all position semiautomatic arc welding. It is designed to weld 2-3% nickel steels for applications requiring good toughness at subzero temperatures; in addition, it is used to weld various other high-strength low-alloy steels and various fine-grained steels with low-temperature toughness. Tri-Mark TM-811N2 is used to deposit typically 2.35% nickel steel weld metal with good low-temperature impact properties. It is used for shipbuilding, oil rigs and similar structures. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as heat treating, machining, and joining. Filing Code: SA-389. Producer or source: Tri-Mark Inc..


Sign in / Sign up

Export Citation Format

Share Document