scholarly journals STRUCTURE AND PROPERTIES OF ROLLED STEEL AFTER SKIN-ROLLING ACCORDING TO DIFFERENT TECHNOLOGICAL PRODUCTION SCHEMES

Author(s):  
V.Z. KUTSOVA ◽  
М. А. KOVZEL ◽  
T.V. KOTOVA

Problem statement. Development of an effective technology for the skin-rolling will allow the production of hot-rolled sheet products with quality indicators that meet the requirements of standards for cold-rolled sheets. Consumers with significant economic benefits will be able to use relatively inexpensive hot-rolled sheets instead of expensive cold-rolled sheets. The purpose of the article: establishment of the effect of skin-rolling to various technological schemes for the production of hot rolled fine and thickness rolled for cold stamping on the structure and properties of the metal. Conclusion. The patterns of the formation of the structure and properties after skin-rolling of hot rolling sheet steel and plate steel  for cold stamping are established. It is shown that with an increase in the degree of deformation during skin-rolling in the unit cutting unit, there is a decrease in the plasticity of hot-rolled plate steel strips of low carbon steels. As a result of heat treatment and skin-rolling on a separately located mill of hot rolled, thin-sheet low carbon steel, the plasticity of the metal rises and a homogeneous structure is formed in accordance with the requirements of ДСТУ 2834-94. Obtaining hot-rolled thin-sheet steel with quality indicators at the level of requirements for cold-rolled metal will allow the use of hot-rolled steel instead of cold-rolled one, which will ensure an increase in labor productivity and savings electricity.

Alloy Digest ◽  
1979 ◽  
Vol 28 (5) ◽  

Abstract ARMCO FORMABLE 70 HR is a hot-rolled steel with excellent ductility, weldability and edge-tear resistance at a minimum yield strength of 70,000 psi (483 MPa). For this relatively high strength level, it has unusually good fabricating properties that are the result of closely controlled processing of a fully killed, low-carbon, vacuum-degassed, columbium-alloyed steel. This special composition and processing practice minimize harmful nonmetallic inclusions that hamper formability. Typical applications include automotive reinforcements, truck parts and construction components. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fatigue. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SA-359. Producer or source: Armco Inc., Eastern Steel Division.


2016 ◽  
Vol 46 (5) ◽  
pp. 364-367 ◽  
Author(s):  
I. V. Doshchechkina ◽  
S. S. D’yachenko ◽  
I. V. Ponomarenko ◽  
I. S. Tatarkina

Texture ◽  
1974 ◽  
Vol 1 (3) ◽  
pp. 183-194 ◽  
Author(s):  
R. L. Every ◽  
M. Hatherly

The preferred orientations in hot-rolled, cold-rolled (70 % reduction), and annealed low-carbon steels (capped and aluminium-killed grades) have been investigated. Particular attention has been paid to the factors that control texture formation during annealing.The elastic energy stored in the cold-rolled steels is orientation dependent and the sequence, estimated from a Fourier analysis of X-ray line broadening, is V110>V111>V211>V100; the values range from 3.51 to 1.14 cal/g atom. The high energy components ({110}, {111}) have elongated cell structures but those of lower energy are equiaxed. In capped steels the high energy components recover and recrystallize most rapidly. In aluminium-killed steels both recovery and recrystallization are inhibited at low temperatures ≤ 500℃ and recrystallization begins first in the {111} components. It is shown that these effects are associated with precipitation and/or segregation of AlN during recovery. The recrystallization texture is determined primarily by oriented nucleation.


2013 ◽  
Vol 43 (5) ◽  
pp. 313-316 ◽  
Author(s):  
S. M. Bel’skii ◽  
Yu. A. Mukhin ◽  
S. I. Mazur ◽  
A. I. Goncharov

2015 ◽  
Vol 788 ◽  
pp. 187-193 ◽  
Author(s):  
Aleksandr Prudnikov ◽  
Marina Popova ◽  
Vladimir Prudnikov

The results of the influence of preliminary thermal cyclic deformation and subsequent hardening heat treatment on the microstructure and mechanical properties of hot-rolled sheet steel 10 are presented. It is shown that the use of preliminary thermal cyclic deformation of the steel 10 stock material results in a fine-grained structure of a hot-rolled sheet (3 mm thick) produced by an industrial technology. Deformation occurred at a temperature above AC3 (1250 °C), with cooling to 200-300 °C during 10 cycles and the deformation ratio per cycle being 6-8 %. Such a treatment before sheet hot-rolling allows increasing the strength characteristics (tensile strength, yield strength) by almost 30 %. It has been established that the use of subsequent heat treatment (quenching, 900 °C, water and tempering 1 h, 600 °C) leads to a further increase in strength characteristics by 15-20% while maintaining a sufficient level of ductility of sheet steel.


2015 ◽  
Vol 817 ◽  
pp. 415-420
Author(s):  
Xing Dong Peng ◽  
Mei Ling Wang ◽  
Sheng Li Li ◽  
Jie Xu

The hot rolled strips for internal plates of automobile was developed by taking the technologies of low-carbon softening steel, including strictly control the chemical composition content during the steel melting and optimization of the rolling processes in the thin slab continuous casting and rolling line. The results showed that when carbon content was 0.04%, adding aluminum content or reducing silicon content and manganese content, reducing the reduction in previous rolling passes and increasing the reduction of the finishing pass at high temperature was beneficial for reducing the yield strength and tensile strength of the hot rolled strips. The precipitate of the samples after annealing showed that the precipitate of aluminum-nitride increased significantly at 850°C. And the texture of the samples after annealing showed that the main texture was {110} <001> and its intensity was 1.7-2.0, annealing with hot rolled strips did not benefit the advantageous texture. Tension-tension fatigue properties of hot rolled strips and cold rolled ones were determined, the results showed that the fatigue properties of hot rolling strips were rather higher than that of cold rolled ones. In the stamping experiments of some automobile parts, there was not any drawback, and the forming properties of hot rolling strips were equal to that of cold rolled ones. It was feasible to replace the cold rolled strips with the hot rolled ones for the internal plates of automobile.


2021 ◽  
Vol 1016 ◽  
pp. 1045-1050
Author(s):  
Toshio Ogawa ◽  
Ryo Hishikawa ◽  
Yoshitaka Adachi

We investigate the effect of the cold reduction rate on ferrite recrystallization behavior during the annealing of low-carbon steel with different initial microstructures. Three types of hot-rolled sheet specimens are prepared: specimens P, B, and M, which consist of ferrite and pearlite, bainite, and martensite, respectively. To evaluate the effect of the cold reduction rate on ferrite recrystallization behavior, hot-rolled sheet specimens are cold-rolled at cold reduction rates of 40% and 67%. The cold-rolled sheet specimens are heated to the target temperature, and then water-quenched to room temperature. Irrespective of the initial microstructures, the ferrite recrystallization is accelerated by increasing the cold reduction rate. In addition, the dislocation densities of specimens P and B increase at the larger cold reduction rate, which accelerates ferrite recrystallization in these specimens. In the case of specimen M, the dislocation arrangement parameter remarkably decreases at the larger cold reduction rate, whereas the dislocation density hardly changes. Thus, we conclude that the accelerated ferrite recrystallization at the larger cold reduction rate for specimen M can be mainly attributed to an increase in the amount of interactions between dislocations in the specimen.


Sign in / Sign up

Export Citation Format

Share Document