Plant extracts inducing systemic resistance in Solanum lycopersicum (tomato) seedlings against Rhizoctonia solani: modulating antioxidant enzymes and PR-proteins expression

2021 ◽  
Vol 54 (2) ◽  
Author(s):  
Nabeela Afzal ◽  
Faisal Mehdi ◽  
Shagufta Sahar ◽  
Saddia Galani ◽  
Saleem Shahzad ◽  
...  
2021 ◽  
Vol 735 (1) ◽  
pp. 012079
Author(s):  
Muneer Saeed M. Al-Baldawy ◽  
Ahed A A H Matloob ◽  
Mohammed K. N. Almammory

Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1145
Author(s):  
Ahmed Noureldeen ◽  
Mohd Asif ◽  
Taruba Ansari ◽  
Faryad Khan ◽  
Mohammad Shariq ◽  
...  

This study was conducted on tomato (Solanum lycopersicum cv. K-21) to investigate the bioprotective nature of Pseudomonas fluorescens and its interactive effects with Meloidogyne incognita in terms of growth biomarkers, changes in biochemical attributes and modulation in antioxidant enzymes of the tomato plant. In this study, we grew tomato plants with M. incognita and P. fluorescens in separate pots, simultaneously and sequentially (15 days prior or post) after 15 days of seed sowing. The sequential inoculation of Mi15→Pf maximally increased the root-knot index and decreased the nematode population. It was also noted that inoculation suppressed the plant growth biomarkers in comparison to control. However, maximum suppression in nematode reproduction and increment in growth and physiological attributes were observed when P. fluorescens was applied 15 days prior to the nematode (Pf15→Mi) as compared to control. All the treatments showed an increase in antioxidant enzymes. Expression of phenol content and defensive enzymes such as peroxidase (POX) and superoxide dismutase (SOD) increased, in contrast to a significant reduction in malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents when compared with the untreated inoculated plants. However, the highest levels of POX and SOD, and a lowest of phenol, MDA and H2O2 were displayed in the treatment Pf15→Mi, followed by Mi+Pf and Mi15→Pf.


2017 ◽  
Vol 6 (9) ◽  
pp. 1676 ◽  
Author(s):  
Ramaraju Cherkupally ◽  
Srinivasa Reddy Kota ◽  
Hindumathi Amballa ◽  
Bhumi Narasimha Reddy

The antifungal activity of aqueous extracts of nine plants viz, Azadirachta indica, Parthenium hysterophorus, Momordica charantia, Allium sativum, Eucalyptus globules, Calotropis procera, Aloe vera, Beta vulgaris and Datura stramonium were assessed in vitro against Fusarium oxysporum f. sp. melongenae, Rhizoctonia solani and Macrophomina phaseolina, the soil borne phytopathogens. The assessment of fungitoxic effect was carried out by using three different concentrations i.e., 5, 10 and 20% against the test fungi, in terms of percentage of mycelial growth inhibition. The extract of A. sativum completely inhibited the mycelial growth of M. phaseolina at all the concentrations. The extracts of D. stramonium and E. globulus inhibited the mycelial growth of R. solani of 72%, and 70.7% respectively at 20% concentration, that of A. sativum, E. globulus and D. stramonium exhibited inhibition percentage of 63.3%, 61.8% and 61.1% respectively at 20% concentration on Fusarium oxysporum f. sp. melongenae. The application of plant extracts for disease management could be less expensive, easily available, non-polluting and eco-friendly.


2011 ◽  
Vol 8 (1) ◽  
pp. 319-323
Author(s):  
Baghdad Science Journal

The experiment was conducted to study the effect of leaves extract of Salvia sclarea , Rosmarinus officinalis and Thymus vulgaris with 10% and 30% concentration on germination of seeds and growth of seedlings . The effect of these extracts on infection percentage of seeds decay and surface growth of Rhizoctonia solani . The results showed that the three extracts effected significantly to reduced percentage of seeds germination, acceleration of germination , promoter indicator , infection percentage of seeds decay and surface growth of R. solani especially in 30% concentration .


2008 ◽  
Vol 98 (11) ◽  
pp. 1190-1198 ◽  
Author(s):  
M. J. Lehtonen ◽  
P. Somervuo ◽  
J. P. T. Valkonen

Rhizoctonia solani is an important soilborne and seedborne fungal pathogen of potato (Solanum tuberosum). The initial infection of sprouts prior to emergence causes lesions and may be lethal to the sprout or sprout tip, which results in initiation and compensatory growth of new sprouts. They emerge successfully and do not suffer significant damage. The mechanism behind this recovery phenomenon is not known. It was hypothesized that infection may induce pathogen defense in sprouts, which was investigated in the present study. Tubers were sprouted in cool and moist conditions in darkness to mimic conditions beneath soil. The basal portion of the sprout was isolated from the apical portion with a soft plastic collar and inoculated with highly virulent R. solani. Induction of defense-related responses was monitored in the apical portion using microarray and quantitative polymerase chain reaction techniques at 48 and 120 h postinoculation (hpi) and by challenge-inoculation with R. solani in two experiments. Differential expression of 122 and 779 genes, including many well-characterized defense-related genes, was detected at 48 and 120 hpi, respectively. The apical portion of the sprout also expressed resistance which inhibited secondary infection of the sprouts. The observed systemic induction of resistance in sprouts upon infection with virulent R. solani provides novel information about pathogen defense in potato before the plant emerges and becomes photosynthetically active. These results advance our understanding of the little studied subject of pathogen defense in subterranean parts of plants.


Sign in / Sign up

Export Citation Format

Share Document