scholarly journals ДОСЛІДЖЕННЯ КІНЕМАТИЧНИХ ПАРАМЕТРІВ МАШИНИ ДЛЯ ОБРОБКИ ДЕТАЛЕЙ З ДВОМА ЄМКОСТЯМИ, ЩО ВИКОНУЮТЬ СКЛАДНИЙ ПРОСТОРОВИЙ РУХ

Author(s):  
М. Г. Залюбовський ◽  
І. В. Панасюк ◽  
В. В. Малишев

Investigation of the main kinematic parameters of a shredding machine with two moving tanks connected by a translational kinematic pair and performing complex spatial motion to be able to further predict the technological result at the design stage of such equipment and the corresponding technological operations of machining parts.  Using the SolidWorks-2016 Motion computer-aided design system, 3D modeling was carried out, followed by kinematic analysis, of a machine for processing parts with two movable capacities, which are interconnected by a translational kinematic pair and perform complex spatial motion. The essence of kinematic analysis was to determine the linear velocities and accelerations of points that coincide with the ends of the working tanks of the machine. Based on 3D modeling and kinematic analysis in the SolsdWorks-2016 Motion computer-aided design system, some kinematic parameters of the machine are determined, in particular, the law of the change in the angular velocity of the driven shaft of the machine is obtained in the form of graphical dependencies, the change in the translational speed and translational acceleration of four points, which are conventionally located in the center, is studied the ends of each of the working capacities. The relationship between some kinematic parameters of the developed machine design with two moving capacities that perform complex spatial motion is established. It was found that the kinematic parameters of the two tanks of the machine differ from each other, as a result of which, during the execution of the corresponding technological operations, the intensity of movement of the working array in the two capacities will differ from each other. In addition, the ends of each of the working capacities move with almost the same kinematic parameters, which will facilitate the movement of the working array between the opposite ends of both tanks in opposite directions with the same intensity. The results obtained make it possible to determine the most rational functional purpose of the machine under study.

Author(s):  
Т. В. Самодурова ◽  
Н. Ю. Алимова ◽  
О. А. Волокитина ◽  
О. В. Гладышева

Постановка задачи. Для получения оптимальных проектных решений, удовлетворяющих условиям безопасности движения в сложных погодных условиях, необходимо сравнение вариантов автомобильных дорог по условиям снегонезаносимости. Такие расчеты должны стать составной частью системы автоматизированного проектирования САПР-АД. Результаты. Предложен системный поход к решению задачи, определен перечень информации, необходимой для проведения расчетов. Выполнен анализ результатов исследований по снегозаносимости дорог, проводимых в России и за рубежом. Предложены расчетные схемы и модели для оценки вариантов продольного профиля и земляного полотна автомобильной дороги по снегозаносимости. Предложены решения для оценки вариантов плана трассы с использованием карт с расчетными параметрами метелей. Выводы. Реализация предложенной методики проведения расчетов позволит на стадии проектирования оценить варианты автомобильной дороги по условиям снегозаносимости. Statement of the problem. In order to obtain optimal design solutions that meet the conditions of safety traffic in difficult weather conditions, it is necessary to compare the options of highways according to the snow tolerance conditions. Such calculations should become an integral part of the CAD-AD computer-aided design system. Results. A systematic approach to solving the problem is set forth, a list of information necessary for calculations is identified. The results analysis of studies on the snow-bearing capacity of roads conducted in Russia and abroad is carried out. Calculation schemes and models are suggested to evaluate options for the longitudinal profile and the roadbed for the snow-bearing capacity. Solutions for evaluating variants of the route plan using maps with calculated parameters of snowstorms are proposed. Conclusions. The implementation of the proposed calculation methodology will make it possible at the design stage to evaluate the options of the highway according to the conditions of the snow-bearing capacity.


2021 ◽  
pp. 20-28
Author(s):  
MARK ZALIUBOVSKYI ◽  
VLADYSLAVA SKIDAN

Goal. Kinetostatic study of a statically defined hinged spatial mechanism without excessive (passive) connection of the shredding machine with two working tanks connected by a translational kinematic pair. Method. Radial and axial components of reactions in all rotating and translational kinematic pairs of the hinged statically defined spatial mechanism of the machine for processing of details with two working capacities connected among themselves by translational kinematic pair at its work at idling were determined on the basis of kinetostatic research. The study was performed using the computer-aided design system SolidWorks-2016 computer-aided design system, which performed a 3D model of a shredding machine with two working tanks connected by a translational kinematic pair. Results. 3D modeling of a shredding machine with two working tanks connected by translational kinematic pair in the computer-aided design system SolidWorks-2016 computer-aided design system is performed, maximum values of radial and axial components of reactions in all rotating and translational kinematic pairs of machine are determined, and the influence of total two working tanks for the increase of the maximum values of reactions in the kinematic pairs of the spatial mechanism of the machine. Scientific novelty. For the first time, the relationship between the total wheelbase of two working tanks and the change in the maximum values of reactions (axial and radial) in all rotating and translational kinematic pairs of the shredding machine was established. The allowable range of variation of the total wheelbase of two working tanks is determined, which creates conditions for long-term operation of the machine. Practical significance. It is established that the change of maximum values of radial and axial components of reactions in all rotating and translational kinematic pairs of the spatial mechanism of the galvanizing machine depends on the total axial distance of two working capacities of the machine. The obtained research results can be useful in the design of shredding equipment with complex spatial movement of working tanks.


Author(s):  
Konstantinas Stanislovas Danaitis ◽  
Ana Usovaitė

3D design technology is the basis for the modern computer graphics. AutoCAD 2015 is a powerful version of computer-aided design system. We can solve complex tasks, without which this instrument can’t be solved in general. Using 3D design technology we not only save time working with a drawing. The geometric models are the foundation of the design basics, for working with drawing we can create projections, footnotes, sections and other modern graphics elements. AutoCAD can use and process the data from the model. This progressive design technology includes all parts of the design, starting from machine details, furniture and finishing with architectural forms of complex object models.


Author(s):  
S. A. Bratchikov ◽  
E. A. Abramova

Objective. The objective of the study is to consider the application field of modern device development and design methods using the means of 3D modeling and simulation of physical processes. The validity of the application and criteria for the reliability of the results obtained in the sequential design of the mechanical part of the electric drive and the control system are investigated.Methods. Methods of model representation of 3D objects in computer-aided design systems are considered, as well as methods for solving problems of determining strain under the applied load. Using the example of an elementary joint, the obtained results of the dynamic characteristic of an elastic shaft in a computer-aided design system are compared with those calculated analytically.Results. The article defines the basic principles and relations applicable to describing the shape of 3D models. Methods are shown by which it is possible to obtain information about the mass-centering model characteristics. The relations that form the basis of numerical methods for solving problems of determining elastic deformations of bodies are also given. The error that can occur when using insufficiently small elementary volumes in solving the problem of determining elastic deformation is shown.Conclusion. The use of 3D modeling in the design of complex technical systems is justified and speeds up production processes. However, numerical methods cannot always give an accurate result leading to the need to either increase the complexity of calculations or additionally adjust some designed device parameters.


Author(s):  
T. P Savostina ◽  
◽  
S.S. Kosyachenko

This article is devoted to research in the field of determining the optimal weight of the structure at the design stage. As an example, the article considers the electric hoist as a unified technical object consisting of separate independent blocks: the lifting mechanism, the movement mechanism, suspension elements and brakes. The computer-aided design system allows you to perform calculations of individual blocks in different layouts, which significantly reduces the time spent on design. The result of choosing the optimal mass of the structure was a variant of the layout with a minimum total mass.


Author(s):  
A. N. Bozhko

Computer-aided design of assembly processes (Computer aided assembly planning, CAAP) of complex products is an important and urgent problem of state-of-the-art information technologies. Intensive research on CAAP has been underway since the 1980s. Meanwhile, specialized design systems were created to provide synthesis of assembly plans and product decompositions into assembly units. Such systems as ASPE, RAPID, XAP / 1, FLAPS, Archimedes, PRELEIDES, HAP, etc. can be given, as an example. These experimental developments did not get widespread use in industry, since they are based on the models of products with limited adequacy and require an expert’s active involvement in preparing initial information. The design tools for the state-of-the-art full-featured CAD/CAM systems (Siemens NX, Dassault CATIA and PTC Creo Elements / Pro), which are designed to provide CAAP, mainly take into account the geometric constraints that the design imposes on design solutions. These systems often synthesize technologically incorrect assembly sequences in which known technological heuristics are violated, for example orderliness in accuracy, consistency with the system of dimension chains, etc.An AssemBL software application package has been developed for a structured analysis of products and a synthesis of assembly plans and decompositions. The AssemBL uses a hyper-graph model of a product that correctly describes coherent and sequential assembly operations and processes. In terms of the hyper-graph model, an assembly operation is described as shrinkage of edge, an assembly plan is a sequence of shrinkages that converts a hyper-graph into the point, and a decomposition of product into assembly units is a hyper-graph partition into sub-graphs.The AssemBL solves the problem of minimizing the number of direct checks for geometric solvability when assembling complex products. This task is posed as a plus-sum two-person game of bicoloured brushing of an ordered set. In the paradigm of this model, the brushing operation is to check a certain structured fragment for solvability by collision detection methods. A rational brushing strategy minimizes the number of such checks.The package is integrated into the Siemens NX 10.0 computer-aided design system. This solution allowed us to combine specialized AssemBL tools with a developed toolkit of one of the most powerful and popular integrated CAD/CAM /CAE systems.


Sign in / Sign up

Export Citation Format

Share Document