scholarly journals Pengaruh Variasi Rasio H2O2/COD dan Tegangan Terhadap Penurunan COD Air Limbah Rumah Sakit dengan Metode Elektro – Fenton

2020 ◽  
Vol 4 (2) ◽  
pp. 15
Author(s):  
Fami Amalia Putri ◽  
Sarto Sarto ◽  
Ahmad Tawfiequrrahman Yuliansyah

Limbah Rumah Sakit memiliki senyawa polutan yang tinggi, beracun, dan bahkan ada yang bersifat radioaktif. Limbah yang paling banyak terdapat di Rumah Sakit yaitu limbah dalam bentuk cair yang mengandung limbah obat – obatan seperti jenis antibiotik, beberapa mikroorganisme patogen, dan kandungan logam berat yang dapat mencemari lingkungan hidup, mengganggu kesehatan manusia dan makhluk hidup lain. Limbah Rumah Sakit Kota Yogyakarta mempunyai kadar COD yang tinggi yaitu 421,03 mg/L dengan pH sebesar 7,3. Advanced Oxidation Process (AOPs) telah banyak terbukti dapat menurunkan kadar COD limbah industri maupun domestik. Pada penelitian ini, AOPs yang dipilih adalah Elektro – Fenton. Penelitian ini bertujuan untuk memperoleh kondisi operasi yang maksimum pada metode Elektro - Fenton dan mengetahui pengaruh dari parameter yang digunakan untuk menurunkan kadar Chemical Oxygen Demand (COD). Penanganan uji COD dilakukan untuk mengetahui pengurangan kadar oksigen pada air limbah agar sesuai dengan standar baku mutu air limbah Rumah Sakit yang dapat dibuang ke lingkungan yaitu sebesar 80 ppm. Proses Elektro – Fenton dilakukan secara batch, dengan variasi rasio H2O2/COD yang digunakan terdiri dari 2,125; 10; dan 19, 16 (g/g). Sedangkan variasi tegangan sebesar 3 volt, 4 volt, dan 5 volt. Kondisi maksimum diperoleh pada rasio H2O2/COD 10 (g/g) dan tegangan 4 volt dengan waktu kontak 60 menit. Kata Kunci : air limbah rumah sakit, elektro – fenton, proses oksidasi lanjutan, kebutuhan oksigen kimiawi, hidrogen peroksida

e-xacta ◽  
2016 ◽  
Vol 9 (2) ◽  
Author(s):  
Denis Rafael de Souza Lima ◽  
Isabela Luiza Alves de Almeida ◽  
Vanderlei Inácio de Paula

<p>Neste trabalho avaliou-se a aplicação do processo oxidativo avançado (POA) de foto-peroxidação (UV/H<sub>2</sub>O<sub>2</sub>) na degradação do azocorante têxtil comercial Azul Reativo 5G. Foram preparadas soluções sintéticas contendo o corante e tratadas através do respectivo POA, sendo a eficiência do tratamento avaliada através dos seguintes parâmetros: descoloração, redução da demanda química de oxigênio (DQO) e ecotoxicidade com sementes de Lactuca sativa. Após 30 minutos de tratamento em condições otimizadas na presença de peróxido de hidrogênio e radiação ultravioleta, foi observada descoloração na ordem de 91,8% sem redução significativa da DQO (1,8%), além de diminuição da ecotoxicidade da solução, indicando a viabilidade da aplicação do processo UV/H<sub>2</sub>O<sub>2</sub> para tratamento de resíduos líquidos contendo este azocorante.</p><p>ABSTRACT</p><p>In the present paper was evaluated the application of advanced oxidation process (AOP) photo-peroxidation (UV/H<sub>2</sub>O<sub>2</sub>) applied to degradation of the commercial textile azo dye Reactive Blue 5G. Synthetic solutions were prepared containing the dye, treated through the respective AOP and the efficiency of the treatment evaluated by the following parameters: discoloration, reduction of chemical oxygen demand (COD) and ecotoxicity with Lactuca sativa seeds. After 30 minutes of treatment in optimized conditions in the presence of hydrogen peroxide and ultraviolet radiation, discoloration was observed in order of 91.8% without significant reduction of COD (1.8%), but decrease in the ecotoxicity of the solution, indicating feasibility of the process UV/H<sub>2</sub>O<sub>2</sub> for treating liquid wastes containing this azo dye.</p>


2019 ◽  
Vol 6 (1) ◽  
pp. 8-16 ◽  
Author(s):  
Manjari Srivastav ◽  
Meenal Gupta ◽  
Sushil K. Agrahari ◽  
Pawan Detwal

Per capita average annual freshwater availability is gradually reduced due to increasing population, urbanization and affluent lifestyles. Hence, management of wastewater is of great concern. The wastewater from different industries can be treated by various conventional treatment methods but these conventional treatment technologies seem to be ineffective for the complete removal of pollutants especially refractory organic compounds that are not readily biodegradable in nature. Detergents, detergent additives, sequestering agents like EDTA, Pesticides, Polycyclic aromatic hydrocarbons, etc. are some of the recalcitrant organic compounds found in the wastewater. One of the treatment technologies for the removal of recalcitrant organic compounds is Advanced Oxidation Process (AOP). The production of hydroxyl free radical is the main mechanism for the AOP. AOP is a promising technology for the treatment of refractory organic compounds due to its low oxidation selectivity and high reactivity of the radical. Hydrogen peroxide (H2O2), Ozonation, Ultra-violet (UV) radiation, H2O2/UV process and Fenton’s reaction are extensively used for the removal of refractory organic compounds thus reducing Chemical Oxygen Demand (COD), Total Organic Carbon (TOC), phenolic compounds, dyes etc. to great extent. From the studies, we found that Fenton’s reagents appear to be most economically practical AOP systems for almost all industries with respect to high pollutant removal efficiency and it is also economical. From the energy point of view, the ozone based process proves to be more efficient but it is costlier than the Fenton’s process.


2014 ◽  
Vol 984-985 ◽  
pp. 159-163
Author(s):  
A. Annam Renita ◽  
S. Sai Bhargav ◽  
Evin Joy

This paper deals with the advanced oxidation using Electro-fenton reagent for the degradation of azo-dyes in textile effluents. Discharge of textile effluents causes inevitable pollution of water resources which calls for further treatment methods. In this experiment, textile effluent samples were treated with iron electrodes with the reagents, hydrogen peroxide and ferrous sulfate .The acid dye effluents which were used in this study are Acid Orange 7, Acid Red 88, and Acid Violet 7. The temperature was set to 40° C. Samples of 20 ml were analyzed for Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD) and Colour reduction. Experiments were carried out at voltage variations of 2, 4, 6 and 8 volts. From the results, COD and Colour were observed to be reduced drastically from respective original values before treatment with Fenton’s reagent using electro-chemical method.Keywords--- Advanced oxidation, Electro-fenton, BOD, COD, Colour reduction


2015 ◽  
Vol 6 (1) ◽  
pp. 59-71 ◽  
Author(s):  
G. Selvabharathi ◽  
S. Adishkumar ◽  
S. Jenefa ◽  
G. Ginni ◽  
J. Rajesh Banu ◽  
...  

This study investigated the practical application of combined advanced oxidation processes (AOPs), such as homogeneous TiO2 photocatalysis and heterogeneous photo-Fenton, for the treatment of tannery wastewaters. An optimization study was conducted on the photocatalytic degradation of tannery wastewaters, in order to understand the effects of different operating parameters on the degradation kinetics. The chemical oxygen demand of tannery wastewater decreased from an initial level of 3,400 mg/L in raw wastewater to 140 mg/L (96% removal) in wastewater treated by the combined advanced oxidation process at optimum pH 7, TiO2 dosage of 0.2 g/L, Fe2+ dosage of 0.5 g/L, H2O2 dosage of 1.8 g/L and a treatment time of 4 hours. The biodegradability of wastewater increased from an initial level of 0.4 to 0.7 after treatment under optimum experimental conditions at a treatment time of 60 min. An annual treatment cost of US$21.34/m3 of treated water was obtained. The combined advanced oxidation process proved to be an efficient and appropriate technique for the effective removal of complex organic compounds in industrial wastewater.


2021 ◽  
Author(s):  
Gagik Badalians Gholikandi ◽  
Atefeh Mollazadeh ◽  
Hamidreza Farimaniraad ◽  
Hamidreza Masihi

Abstract Due to the recent efforts to improve the conventional disinfection methods efficiency of wastewater treatment plants effluent, in this study, the efficiency of the peroxymonosulfate-ozone (PMS+O3) advanced oxidation process in lab scale by the aim of disinfection and simultaneous removal of existing amoxicillin micro-pollutant under optimum operational condition was investigated for the first time. Furthermore, the results were compared with those obtained from the experiments conducted employing persulfate-ozone (PS+O3), hydrogen peroxide-ozone (H2O2+O3), and ozonation (O3) processes. For this purpose, the main parameters including the total coliforms, amoxicillin concentration, turbidity, chemical oxygen demand (COD), biochemical oxygen demand (BOD5), total nitrogen (TN), electrical conductivity (EC), total dissolved solids (TDS), and total suspended solids (TSS) were considered. The test results show that under optimized operational conditions (retention time of 20 minutes, ozone dosage rate of 0.83 mmol/L, and peroxymonosulfate concentration of 0.06 mmol , 99.99% total coliforms (e.g., the number of total coliforms reached consistently less than 400 MPN in 100 ml) removal was reached by peroxymonosulfate-ozone advanced oxidation process. Also, amoxicillin concentration removal efficiency reached 90±2%. In comparison, although the total coliforms reduction of PS+O3 and H2O2+O3 methods in 30 min are approximately the same, the amoxicillin concentration removal efficiency is about 60-70%. Due to the importance of ensuring effluent quality, the related removal efficiency of other considered parameters is also evaluated and presented. Eventually, the peroxymonosulfate-ozone method can be considered as a novel efficient approach for wastewater plants effluent disinfection and amoxicillin micro-pollutant removal simultaneously which is a novel approach.


2020 ◽  
Vol 234 (2) ◽  
pp. 279-294 ◽  
Author(s):  
Aneela Jamil ◽  
Tanveer Hussain Bokhari ◽  
Munawar Iqbal ◽  
Ijaz Ahmad Bhatti ◽  
Muhammad Zuber ◽  
...  

AbstractIn view of promising efficiency of advanced oxidation process (AOP), gamma radiation in combination with H2O2 was employed for the degradation of disperse red 73 (DR73) dye. Cs-137 gamma radiation source was used for dye aqueous solution irradiation. The process variables such as pH (3–9), H2O2 concentration (0.3–0.9 mL), gamma radiation absorbed dose (1–20 kGy) and DR73 initial concentration (50–150 mg/L) were optimized for maximum degradation of dye. The efficiency of AOP was evaluated on the basis of dye degradation, water quality parameters and toxicity reduction. Degradation of DR73 was achieved 69% using gamma radiation absorbed dose of 20 kGy and at the same dose 96.3% degradation was achieved in the presence of 0.9 mL/L H2O2. The dye degradation found to be dependent on dye initial concentration and pH of the medium. The radiolytic progress of DR73 was monitored by Fourier transform infrared (FTIR) and UV-Visible spectroscopy. The chemical oxygen demand (COD) and biological oxygen demand (BOD) were reduced significantly in response of treatment of dye at optimum conditions of process variables. The toxicity of treated and un-treated dye solution was monitored by haemolytic and Ames assays. Results revealed that the toxicity of DR73 dye was also reduced significantly after treatment. Findings revealed that the gamma radiation based AOPs are promising and could possibly be used for the remediation of textile wastewater contains toxic dyes.


Sign in / Sign up

Export Citation Format

Share Document