scholarly journals Indoor Positioning System Based on Global Positioning System Signals with Down- and Up-Converters in 433 MHz ISM Band

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4338
Author(s):  
Abdulkadir Uzun ◽  
Firas Abdul Ghani ◽  
Amir Mohsen Ahmadi Najafabadi ◽  
Hüsnü Yenigün ◽  
İbrahim Tekin

In this paper, an indoor positioning system using Global Positioning System (GPS) signals in the 433 MHz Industrial Scientific Medical (ISM) band is proposed, and an experimental demonstration of how the proposed system operates under both line-of-sight and non-line-of-sight conditions on a building floor is presented. The proposed method is based on down-converting (DC) repeaters and an up-converting (UC) receiver. The down-conversion is deployed to avoid the restrictions on the use of Global Navigation Satellite Systems (GNSS) repeaters, to achieve higher output power, and to expose the GPS signals to lower path loss. The repeaters receive outdoor GPS signals at 1575.42 MHz (L1 band), down-convert them to the 433 MHz ISM band, then amplify and retransmit them to the indoor environment. The front end up-converter is combined with an off-the-shelf GPS receiver. When GPS signals at 433 MHz are received by the up-converting receiver, it then amplifies and up-converts these signals back to the L1 frequency. Subsequently, the off-the-shelf GPS receiver calculates the pseudo-ranges. The raw data are then sent from the receiver over a 2.4 GHz Wi-Fi link to a remote computer for data processing and indoor position estimation. Each repeater also has an attenuator to adjust its amplification level so that each repeater transmits almost equal signal levels in order to prevent jamming of the off-the-shelf GPS receiver. Experimental results demonstrate that the indoor position of a receiver can be found with sub-meter accuracy under both line-of-sight and non-line-of-sight conditions. The estimated position was found to be 54 and 98 cm away from the real position, while the 50% circular error probable (CEP) of the collected samples showed a radius of 3.3 and 4 m, respectively, for line-of-sight and non-line-of-sight cases.

2021 ◽  
Author(s):  
Paolo Carbone ◽  
Guido De Angelis ◽  
Valter Pasku ◽  
Alessio De Angelis ◽  
Marco Dionigi ◽  
...  

<div><div><div><p>This paper describes the design and realization of a Magnetic Indoor Positioning System. The system is entirely realized using off-the-shelf components and is based on inductive coupling between resonating coils. Both system-level architecture and realization details are described along with experimental results. The realized system exhibits a maximum positioning error of less than 10 cm in an indoor environment over a 3×3 m2 area. Extensive experiments in larger areas, in non-line-of-sight conditions, and in unfavorable geometric configurations, show sub-meter accuracy, thus validating the robustness of the system with respect to other existing solutions.</p></div></div></div>


Author(s):  
Firdaus Firdaus ◽  
◽  
Noor Azurati Ahmad ◽  
Shamsul Sahibuddin ◽  
Rudzidatul Akmam Dziyauddin ◽  
...  

WLAN indoor positioning system (IPS) has high accurate of position estimation and minimal cost. However, environmental conditions such as the people presence effect (PPE) greatly influence WLAN signal and it will decrease the accuracy. This research modelled the effect of people around user on signal strength and the accuracy. We have modelled the human body around user effects by proposed a general equation of decrease in signal strength as function of position, distance, and number of people. Signal strength decreased from 5 dBm to 1 dBm when people in line of sight (LOS) position, and start from 0.5 dBm to 0.3 dBm when people in non-line of sight (NLOS) position. The system accuracy decreases due to the presence of people. When the system is in NLOS case, the presence of people causes a decrease in accuracy from 33% to 57%. Then the accuracy decrease from 273% to 334% in LOS case.


Author(s):  
Jaka Satria Prayuda ◽  
Denny Darlis ◽  
Akhmad Hambali

Informasi untuk mengetahui lokasi benda atau seseorang merupakan salah satu hal yang penting dalam kehidupan sehari-hari. Selama ini, teknologi Global Positioning System (GPS) dapat diandalkan ketika berada di luar ruangan. Namun, ketika di dalam ruangan, GPS akan sulit menjangkau secara spesifik area bangunan. Dengan memanfaatkan teknologi Light Fidelity (Li-Fi), Indoor Positioning System (IPS) akan lebih mudah dilakukan dan mempunyai keunggulan dari segi akurasi dan efisiensi energi. Tetapi, jika dikaitkan dengan IPS, pemasangan lampu Light Emitting Diode (LED) perlu diperhatikan geometri pemasangannya. Penelitian ini membahas akurasi IPS pada Li-Fi apabila dengan berbagai bentuk geometri dan lokasi pemasangan lampu LED yang berbeda-beda. Teknik positioning Received Signal Strength (RSS) digunakan dengan mengambil kuat daya terima sebagai estimasi suatu jarak. Dengan membandingkan masing-masing bentuk geometri, maka didapatkan data konfigurasi terbaik untuk implementasi IPS. Hasil penelitian menunjukkan bahwa perbedaan jumlah lampu LED dan bentuk geometri akan berpengaruh terhadap akurasi positioning. Hasil menunjukkan bahwa geometri segi enam memiliki rata-rata error yang lebih kecil dibandingkan geometri yang lain, yakni sebesar 1,53×10?05m. Semakin banyak lampu LED atau poin referensi dengan rentang jarak lampu yang lebih rapat, maka dapat menghasilkan positioning yang lebih baik. Kata Kunci: Light Fidelity (Li-Fi), Indoor Positioning System (IPS), Received Signal Strength (RSS), Geometri.


2021 ◽  
Author(s):  
Paolo Carbone ◽  
Guido De Angelis ◽  
Valter Pasku ◽  
Alessio De Angelis ◽  
Marco Dionigi ◽  
...  

<div><div><div><p>This paper describes the design and realization of a Magnetic Indoor Positioning System. The system is entirely realized using off-the-shelf components and is based on inductive coupling between resonating coils. Both system-level architecture and realization details are described along with experimental results. The realized system exhibits a maximum positioning error of less than 10 cm in an indoor environment over a 3×3 m2 area. Extensive experiments in larger areas, in non-line-of-sight conditions, and in unfavorable geometric configurations, show sub-meter accuracy, thus validating the robustness of the system with respect to other existing solutions.</p></div></div></div>


2018 ◽  
Vol 7 (2.14) ◽  
pp. 133 ◽  
Author(s):  
Marina Md Din ◽  
Norziana Jamil ◽  
Jacentha Maniam ◽  
Mohamad Afendee Mohamed

A system that allows users to find and track a specific position is known as positioning system. Global Positioning System (GPS) is one of top known position tracking system that commonly used to find position and location of object outdoor. Tracking an object indoor using GPS is not highly recommended because the signals transmitted through a satellite to a device indoor gets blocked and resulted in weak signals. Thus, an indoor positioning system (IPS) that tracks and positions object indoor has been implemented to overcome the issues of signals multipath that resulted from GPS. The aim of this paper is to provide up to date indoor positioning technologies and compares the technologies according to its technical perspectives.  


2019 ◽  
Vol 7 (1) ◽  
pp. 13
Author(s):  
J. Jamaluddin ◽  
Agung Tjahjo Nugroho ◽  
Wenny Maulina

Indoor Positioning System (IPS) merupakan teknologi informasi untuk menentukan posisi objek di dalam ruangan berbasis wireless smartphone. Perangkat yang digunakan dalam penelitian ini adalah empat unit smartphone, satu smartphone sebagai transmitter, dan tiga smartphone lainnya sebagai receiver. Tujuan penelitian ini adalah mendapatkan model dan tingkat akurasi dari IPS berbasis wireless smartphone menggunakan teknik Global Positioning System (GPS) dengan metode absolut. Penelitian ini dilakukan dengan membuat dua model IPS dan melakukan pengukuran intensitas sinyal Wi-Fi berdasarkan masing-masing model IPS yang telah dibuat untuk mendapatkan persamaan linier antara jarak dan intensitas sinyal Wi-Fi. Persamaan linier yang didapatkan dari model IPS digunakan untuk menentukan jarak antara receiver dan transmitter berdasarkan intensitas sinyal Wi-Fi yang terukur pada saat pengujian model, kemudian informasi jarak tersebut digunakan untuk menentukan posisi objek (transmitter). Hasil penelitian menunjukkan bahwa Model 1 IPS berbasis wireless smartphone mampu mengestimasi posisi dengan rata-rata tingkat kesalahan mencapai 4,46 m dan tingkat akurasinya mencapai 76,51%. Model 2 IPS mampu mengestimasi posisi dengan rata-rata tingkat kesalahan 9,68 m dengan tingkat akurasinya mencapai 49,03%. Berdsarakan hasil tersebut, dapat disimpulkan bahwa model 1 IPS memiliki tingkat akurasi yang lebih baik untuk mengestimasi posisi objek daripada model 2 IPS. Kata Kunci: Global positioning system (GPS), indoor positioning system (IPS), wireless smartphone.


2016 ◽  
Vol 04 (01) ◽  
pp. 23-34 ◽  
Author(s):  
Kexin Guo ◽  
Zhirong Qiu ◽  
Cunxiao Miao ◽  
Abdul Hanif Zaini ◽  
Chun-Lin Chen ◽  
...  

Micro unmanned aerial vehicles (UAVs) are promising to play more and more important roles in both civilian and military activities. Currently, the navigation of UAVs is critically dependent on the localization service provided by the Global Positioning System (GPS), which suffers from the multipath effect and blockage of line-of-sight, and fails to work in an indoor, forest or urban environment. In this paper, we establish a localization system for quadcopters based on ultra-wideband (UWB) range measurements. To achieve the localization, a UWB module is installed on the quadcopter to actively send ranging requests to some fixed UWB modules at known positions (anchors). Once a distance is obtained, it is calibrated first and then goes through outlier detection before being fed to a localization algorithm. The localization algorithm is initialized by trilateration and sustained by the extended Kalman filter (EKF). The position and velocity estimates produced by the algorithm will be further fed to the control loop to aid the navigation of the quadcopter. Various flight tests in different environments have been conducted to validate the performance of UWB ranging and localization algorithm.


Sign in / Sign up

Export Citation Format

Share Document