scholarly journals MICP-Reinforced Soil Under Three-Dimensional Grout Injection Condition

2020 ◽  

<p>The use of microbial-induced carbonate precipitation (MICP) in soil reinforcement has attracted attention in the academic field in recent years. However, most of the existing studies have been conducted based on one-dimensional ( ) grout injection condition. The present study conducted in vitro and sand column experiments of MICP using a ureolytic bacterium (ATCC 11859) (three-dimensional ( ) and models were considered in the sand column experiments) as well as the feasibility and reinforcing effect of the MICP grout injection method. A comparison of the and grout injection methods showed that the specimens reinforced using the grout injection method had higher strength, better homogeneity, a greater content, and a larger permeability coefficient compared with the specimens reinforced using the grout injection method. The limitations of the model should be considered in future practical applications.</p>

2020 ◽  
Vol 57 (2) ◽  
pp. 277-293 ◽  
Author(s):  
Mahmoud G. Hussein ◽  
Mohamed A. Meguid

Soil reinforcement has rapidly become one of the most common soil improvement techniques used in geotechnical engineering. Understanding the behavior of a geogrid under pullout loading is essential for the analysis and design of reinforced soil systems. The overall behavior of reinforced soils is generally dependent on the properties of the geogrid material, the backfill soil, and the interface condition. Modeling the three-dimensional aspects of soil–geogrid interaction under pullout loading condition is numerically challenging and requires special consideration of the different modes of resistance that contribute to the pullout capacity of the geogrid reinforcement. This study describes the results of a three-dimensional finite-element analysis that has been developed to investigate the behavior of a biaxial geogrid embedded in granular backfill material and subjected to pullout loading. The modeling approach considers the noncontinuous nature of the geogrid geometry and the elastoplastic response of the geogrid material. Model validation is performed by simulating laboratory-size pullout test and comparing the experimental data with the analytical as well as numerically calculated results. The detailed behavior of the geogrid and the surrounding backfill is investigated using the proposed numerical approach. Conclusions are made to highlight the suitability of this technique for analyzing similar soil–structure interaction problems.


Archaea ◽  
2015 ◽  
Vol 2015 ◽  
pp. 1-20 ◽  
Author(s):  
Maiko Tanabe ◽  
Yoshizumi Ishino ◽  
Hirokazu Nishida

DNA ligases are indispensable in all living cells and ubiquitous in all organs. DNA ligases are broadly utilized in molecular biology research fields, such as genetic engineering and DNA sequencing technologies. Here we review the utilization of DNA ligases in a variety ofin vitrogene manipulations, developed over the past several decades. During this period, fewer protein engineering attempts for DNA ligases have been made, as compared to those for DNA polymerases. We summarize the recent progress in the elucidation of the DNA ligation mechanisms obtained from the tertiary structures solved thus far, in each step of the ligation reaction scheme. We also present some examples of engineered DNA ligases, developed from the viewpoint of their three-dimensional structures.


Author(s):  
P.L. Moore

Previous freeze fracture results on the intact giant, amoeba Chaos carolinensis indicated the presence of a fibrillar arrangement of filaments within the cytoplasm. A complete interpretation of the three dimensional ultrastructure of these structures, and their possible role in amoeboid movement was not possible, since comparable results could not be obtained with conventional fixation of intact amoebae. Progress in interpreting the freeze fracture images of amoebae required a more thorough understanding of the different types of filaments present in amoebae, and of the ways in which they could be organized while remaining functional.The recent development of a calcium sensitive, demembranated, amoeboid model of Chaos carolinensis has made it possible to achieve a better understanding of such functional arrangements of amoeboid filaments. In these models the motility of demembranated cytoplasm can be controlled in vitro, and the chemical conditions necessary for contractility, and cytoplasmic streaming can be investigated. It is clear from these studies that “fibrils” exist in amoeboid models, and that they are capable of contracting along their length under conditions similar to those which cause contraction in vertebrate muscles.


Author(s):  
J. P. Revel

Movement of individual cells or of cell sheets and complex patterns of folding play a prominent role in the early developmental stages of the embryo. Our understanding of these processes is based on three- dimensional reconstructions laboriously prepared from serial sections, and from autoradiographic and other studies. Many concepts have also evolved from extrapolation of investigations of cell movement carried out in vitro. The scanning electron microscope now allows us to examine some of these events in situ. It is possible to prepare dissections of embryos and even of tissues of adult animals which reveal existing relationships between various structures more readily than used to be possible vithout an SEM.


Author(s):  
D. Reis ◽  
B. Vian ◽  
J. C. Roland

Wall morphogenesis in higher plants is a problem still open to controversy. Until now the possibility of a transmembrane control and the involvement of microtubules were mostly envisaged. Self-assembly processes have been observed in the case of walls of Chlamydomonas and bacteria. Spontaneous gelling interactions between xanthan and galactomannan from Ceratonia have been analyzed very recently. The present work provides indications that some processes of spontaneous aggregation could occur in higher plants during the formation and expansion of cell wall.Observations were performed on hypocotyl of mung bean (Phaseolus aureus) for which growth characteristics and wall composition have been previously defined.In situ, the walls of actively growing cells (primary walls) show an ordered three-dimensional organization (fig. 1). The wall is typically polylamellate with multifibrillar layers alternately transverse and longitudinal. Between these layers intermediate strata exist in which the orientation of microfibrils progressively rotates. Thus a progressive change in the morphogenetic activity occurs.


1998 ◽  
Vol 5 (4) ◽  
pp. 217-223 ◽  
Author(s):  
D PINELLI ◽  
J DRAKE ◽  
M WILLIAMS ◽  
D CAVANAGH ◽  
J BECKER

1999 ◽  
Vol 1 ◽  
pp. S86-S86
Author(s):  
R DESIMONE ◽  
G GLOMBITZA ◽  
C VAHL ◽  
H MEINZER ◽  
S HAGL

2020 ◽  
Vol 27 (29) ◽  
pp. 4778-4788 ◽  
Author(s):  
Victoria Heredia-Soto ◽  
Andrés Redondo ◽  
José Juan Pozo Kreilinger ◽  
Virginia Martínez-Marín ◽  
Alberto Berjón ◽  
...  

Sarcomas are tumours of mesenchymal origin, which can arise in bone or soft tissues. They are rare but frequently quite aggressive and with a poor outcome. New approaches are needed to characterise these tumours and their resistance mechanisms to current therapies, responsible for tumour recurrence and treatment failure. This review is focused on the potential of three-dimensional (3D) in vitro models, including multicellular tumour spheroids (MCTS) and organoids, and the latest data about their utility for the study on important properties for tumour development. The use of spheroids as a particularly valuable alternative for compound high throughput screening (HTS) in different areas of cancer biology is also discussed, which enables the identification of new therapeutic opportunities in commonly resistant tumours.


Sign in / Sign up

Export Citation Format

Share Document