scholarly journals Numerical Simulation of the Effect of Construction Dust Emission on Air Quality in Jinan, a Central City in the North China Plain

2022 ◽  

<p>Numerical simulation was conducted to assess the impact of dust emission on typical environmental sites in Jinan City. The CALPUFF model was applied to five simulation scenarios. The results showed that dust emission had a significant impact on air quality in Jinan. The impact of dust emission on the average concentration of PM10 at 15 monitoring sites was 19.8 μg/m3, accounting for 14.9% of the annual total. The impact of dust emission on the average concentration of PM2.5 was 5.2 μg/m3, accounting for 8.1% of the annual total. Adoption of yellow warning measures in the emission reduction scenarios had insignificant environmental effects due to unfavorable meteorological conditions. Compared with the baseline scenario, the average concentrations of PM10 and PM2.5 decreased by 13.6% and 1.9%, respectively. After adoption of orange and red warning measures, the impact of site dust emission on air quality at the monitoring site was reduced significantly. Significant environmental effects were achieved after all construction sites within a 2-km radius of the monitoring site were closed. Compared with the baseline scenario, the average concentrations of PM10 and PM2.5 were reduced by 45.5% and 42.3%, respectively. The results showed that under adverse meteorological conditions, higher-level warning measures should be undertaken to reduce the impact of site emissions on environmental quality. Considering the economic and social effects of emission reduction, temporary construction stoppage within 2 km of the monitoring site is a feasible plan that is in accordance with the goals of comprehensive environmental management.</p>

2019 ◽  
Vol 19 (17) ◽  
pp. 11199-11212 ◽  
Author(s):  
Ana Stojiljkovic ◽  
Mari Kauhaniemi ◽  
Jaakko Kukkonen ◽  
Kaarle Kupiainen ◽  
Ari Karppinen ◽  
...  

Abstract. We have numerically evaluated how effective selected potential measures would be for reducing the impact of road dust on ambient air particulate matter (PM10). The selected measures included a reduction of the use of studded tyres on light-duty vehicles and a reduction of the use of salt or sand for traction control. We have evaluated these measures for a street canyon located in central Helsinki for four years (2007–2009 and 2014). Air quality measurements were conducted in the street canyon for two years, 2009 and 2014. Two road dust emission models, NORTRIP (NOn-exhaust Road TRaffic Induced Particle emissions) and FORE (Forecasting Of Road dust Emissions), were applied in combination with the Operational Street Pollution Model (OSPM), a street canyon dispersion model, to compute the street increments of PM10 (i.e. the fraction of PM10 concentration originating from traffic emissions at the street level) within the street canyon. The predicted concentrations were compared with the air quality measurements. Both road dust emission models reproduced the seasonal variability of the PM10 concentrations fairly well but under-predicted the annual mean values. It was found that the largest reductions of concentrations could potentially be achieved by reducing the fraction of vehicles that use studded tyres. For instance, a 30 % decrease in the number of vehicles using studded tyres would result in an average decrease in the non-exhaust street increment of PM10 from 10 % to 22 %, depending on the model used and the year considered. Modelled contributions of traction sand and salt to the annual mean non-exhaust street increment of PM10 ranged from 4 % to 20 % for the traction sand and from 0.1 % to 4 % for the traction salt. The results presented here can be used to support the development of optimal strategies for reducing high springtime particulate matter concentrations originating from road dust.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1603
Author(s):  
Ana R. Gamarra ◽  
Yolanda Lechón ◽  
Marta G. Vivanco ◽  
Mark Richard Theobald ◽  
Carmen Lago ◽  
...  

This paper assesses the health impact, in terms of the reduction of premature deaths associated with changes in air pollutant exposure, resulting from double-aim strategies for reducing emissions of greenhouse gases and air pollutants from the transport sector for the year 2030 in Spain. The impact on air quality of selected measures for reducing emissions from the transport sector (increased penetration of biofuel and electric car use) was assessed by air quality modeling. The estimation of population exposure to NO2, particulate matter (PM) and O3 allows for estimation of associated mortality and external costs in comparison with the baseline scenario with no measures. The results show that the penetration of the electric vehicle provided the largest benefits, even when the emissions due to the additional electricity demand were considered.


2021 ◽  
Author(s):  
Ivo Suter ◽  
Lukas Emmenegger ◽  
Dominik Brunner

&lt;p&gt;Reducing air pollution, which is the world's largest single environmental health risk, demands better-informed air quality policies. Consequently, multi-scale air quality models are being developed with the goal to resolve cities. One of the major challenges in such model systems is to accurately represent all large- and regional-scale processes that may critically determine the background concentration levels over a given city. This is particularly true for longer-lived species such as aerosols, for which background levels often dominate the concentration levels, even within the city. Furthermore, the heterogeneous local emissions, and complex dispersion in the city have to be considered carefully.&lt;/p&gt;&lt;p&gt;In this study, the impact of processes across a wide range of scales on background concentrations over Switzerland and the city of Zurich was modelled by performing one year of nested European and Swiss national COSMO-ART simulations to obtain adequate boundary conditions for gas-phase chemical, aerosol and meteorological conditions for city-resolving simulations. The regional climate chemistry model COSMO-ART (Vogel et al. 2009) was used in a 1-way coupled mode. The outer, European, domain, which was driven by chemical boundary conditions from the global MOZART model, had a 6.6 km horizontal resolution and the inner, Swiss, domain one of 2.2 km. For the city scale, a catalogue of more than 1000 mesoscale flow patterns with 100 m resolution was created with the model GRAMM, based on a discrete set of atmospheric stabilities, wind speeds and directions, accounting for the influence of land-use and topography. Finally, the flow around buildings was solved with the CFD model GRAL forced at the boundaries by GRAMM. Subsequently, Lagrangian dispersion simulations for a set of air pollutants and emission sectors (traffic, industry, ...) based on extremely detailed building and emission data was performed in GRAL. The result of this nested procedure is a library of 3-dimensional air pollution maps representative of hourly situations in Zurich (Berchet et al. 2017). From these pre-computed situations, time-series and concentration maps can be obtained by selecting situations according to observed or modelled meteorological conditions.&lt;/p&gt;&lt;p&gt;The results were compared to measurements from air quality monitoring network stations. Modelled concentrations of NO&lt;sub&gt;x&lt;/sub&gt; and PM compared well to measurements across multiple locations, provided background conditions were considered carefully. The nested multi-scale modelling system COSMO-ART/GRAMM/GRAL can adequately reproduce local air quality and help understanding the relative contributions of local versus distant emissions, as well as fill the space between precise point measurements from monitoring sites. This information is useful for research, policy-making, and epidemiological studies particularly under the assumption that exceedingly high concentrations become more and more localised phenomenon in the future.&lt;/p&gt;


Atmosphere ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 742 ◽  
Author(s):  
Ewa Brągoszewska ◽  
Magdalena Bogacka ◽  
Krzysztof Pikoń

Air pollution, a by-product of economic growth, generates an enormous environmental cost in Poland. The issue of healthy living spaces and indoor air quality (IAQ) is a global concern because people spend approximately 90% of their time indoors. An increasingly popular method to improve IAQ is to use air purifiers (APs). Indoor air is often polluted by bioaerosols (e.g., viruses, bacteria, fungi), which are a major concern for public health. This work presents research on culturable bacterial aerosol (CBA) samples collected from dwellings with or without active APs during the 2019 summer season. The CBA samples were collected using a six-stage Andersen cascade impactor (ACI). The CBA concentrations were expressed as Colony Forming Units (CFU) per cubic metre of air. The average concentration of CBA in dwellings when the AP was active was 450–570 CFU/m3, whereas the average concentration when the AP was not active was 920–1000 CFU/m3. IAQ, when the APs were active, was on average almost 50% better than in cases where there were no procedures to decrease the concentration of air pollutants. Moreover, the obtained results of the particle size distribution (PSD) of CBA indicate that the use of APs reduced the proportion of the respirable fraction (the particles < 3.3 µm) by about 16%. Life cycle assessment (LCA) was used to assess the ecological cost of air purification. Our conceptual approach addresses the impact of indoor air pollution on human health and estimates the ecological cost of APs and air pollution prevention policies.


2018 ◽  
Author(s):  
Ana Stojiljkovic ◽  
Mari Kauhaniemi ◽  
Jaakko Kukkonen ◽  
Kaarle Kupiainen ◽  
Ari Karppinen ◽  
...  

Abstract. We have evaluated numerically how effective a few selected measures would be for reducing road dust. The selected measures included the reduction of the use of studded tyres in light-duty vehicles and phasing-out of salt or sand in traction control. We have evaluated these measures for a street canyon location in central Helsinki, for four years (2007–2009 and 2014). Air quality measurements were conducted in the street canyon for two years, 2009 and 2014. Two road dust emission models, NORTRIP and FORE, were applied in combination with the street canyon dispersion model OSPM to compute the street increments of PM10 within the street canyon. The predicted concentrations were compared with the air quality measurements. Both models reproduced the seasonal variability of the PM10 concentrations but under-predicted the yearly mean values. It was found that the largest reductions of concentrations could potentially be achieved by reducing the fraction of vehicles that use studded tyres. For instance, a 30 % percent decrease in the number of vehicles using studded tyres would result in an average decrease of the non-exhaust increment of PM10 from 10 to 22 %, depending on the model used and the year considered. The corresponding decrease after removal of sanding and salting would be from 4 % and 20 % and from 0.1 % to 4 %, respectively. The results can be used for finding optimal strategies for reducing the high springtime particulate matter concentrations originated from road dust.


2019 ◽  
Vol 108 ◽  
pp. 02012
Author(s):  
Małgorzata Piaskowska-Silarska ◽  
Krzysztof Pytel ◽  
Stanisław Gumuła ◽  
Wiktor Hudy

Abstract. The publication presents an assessment of the impact of meteorological conditions on air quality in a given location. The subject matter of the work is related to problem-review issues in the field of environmental protection and energy management. The publication draws attention to the fact that despite several decades of ecological monitoring of air pollution, only in recent years attention has been paid to the scale of air pollution problem. The study examined the relationship between meteorological elements (wind velocity, relative humidity on the amount of air pollution immissions. Significant impact of precipitation, atmospheric pressure and thermal braking layer was indicated. The possibilities of air quality improvement were presented based on the measurement data concerning the immission of impurities.


2012 ◽  
Vol 12 (21) ◽  
pp. 10209-10237 ◽  
Author(s):  
K. Wang ◽  
Y. Zhang ◽  
A. Nenes ◽  
C. Fountoukis

Abstract. The US Environmental Protection Agency's (EPA) Community Multiscale Air Quality (CMAQ) modeling system version 4.7 is further developed to enhance its capability in simulating the photochemical cycles in the presence of dust particles. The new model treatments implemented in CMAQ v4.7 in this work include two online dust emission schemes (i.e., the Zender and Westphal schemes), nine dust-related heterogeneous reactions, an updated aerosol inorganic thermodynamic module ISORROPIA II with an explicit treatment of crustal species, and the interface between ISORROPIA II and the new dust treatments. The resulting improved CMAQ (referred to as CMAQ-Dust), offline-coupled with the Weather Research and Forecast model (WRF), is applied to the April 2001 dust storm episode over the trans-Pacific domain to examine the impact of new model treatments and understand associated uncertainties. WRF/CMAQ-Dust produces reasonable spatial distribution of dust emissions and captures the dust outbreak events, with the total dust emissions of ~111 and 223 Tg when using the Zender scheme with an erodible fraction of 0.5 and 1.0, respectively. The model system can reproduce well observed meteorological and chemical concentrations, with significant improvements for suspended particulate matter (PM), PM with aerodynamic diameter of 10 μm, and aerosol optical depth than the default CMAQ v4.7. The sensitivity studies show that the inclusion of crustal species reduces the concentration of PM with aerodynamic diameter of 2.5 μm (PM2.5) over polluted areas. The heterogeneous chemistry occurring on dust particles acts as a sink for some species (e.g., as a lower limit estimate, reducing O3 by up to 3.8 ppb (~9%) and SO2 by up to 0.3 ppb (~27%)) and as a source for some others (e.g., increasing fine-mode SO42− by up to 1.1 μg m−3 (~12%) and PM2.5 by up to 1.4 μg m−3 (~3%)) over the domain. The long-range transport of Asian pollutants can enhance the surface concentrations of gases by up to 3% and aerosol species by up to 20% in the Western US.


Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1118 ◽  
Author(s):  
Gabriele Donzelli ◽  
Lorenzo Cioni ◽  
Mariagrazia Cancellieri ◽  
Agustin Llopis Morales ◽  
Maria Morales Suárez-Varela

Despite the societal and economic impacts of the COVID-19 pandemic, the lockdown measures put in place by the Italian government provided an unprecedented opportunity to increase our knowledge of the effect transportation and industry-related emissions have on the air quality in our cities. This study assessed the effect of reduced emissions during the lockdown period, due to COVID-19, on air quality in three Italian cities, Florence, Pisa, and Lucca. For this study, we compared the concentration of particulate matter PM10, PM2.5, NO2, and O3 measured during the lockdown period, with values obtained in the same period of 2019. Our results show no evidence of a direct relationship between the lockdown measures implemented and PM reduction in urban centers, except in areas with heavy traffic. Consistent with recently published studies, we did, however, observe a significant decrease in NO2 concentrations among all the air-monitoring stations for each city in this study. Finally, O3 levels remained unchanged during the lockdown period. Of note, there were slight variations in the meteorological conditions for the same periods of different years. Our results suggest a need for further studies on the impact of vehicular traffic and industrial activities on PM air pollution, including adopting holistic source-control measures for improved air quality in urban environments.


2019 ◽  
Vol 19 (17) ◽  
pp. 11303-11314 ◽  
Author(s):  
Tuan V. Vu ◽  
Zongbo Shi ◽  
Jing Cheng ◽  
Qiang Zhang ◽  
Kebin He ◽  
...  

Abstract. A 5-year Clean Air Action Plan was implemented in 2013 to reduce air pollutant emissions and improve ambient air quality in Beijing. Assessment of this action plan is an essential part of the decision-making process to review its efficacy and to develop new policies. Both statistical and chemical transport modelling have been previously applied to assess the efficacy of this action plan. However, inherent uncertainties in these methods mean that new and independent methods are required to support the assessment process. Here, we applied a machine-learning-based random forest technique to quantify the effectiveness of Beijing's action plan by decoupling the impact of meteorology on ambient air quality. Our results demonstrate that meteorological conditions have an important impact on the year-to-year variations in ambient air quality. Further analyses show that the PM2.5 mass concentration would have broken the target of the plan (2017 annual PM2.5<60 µg m−3) were it not for the meteorological conditions in winter 2017 favouring the dispersion of air pollutants. However, over the whole period (2013–2017), the primary emission controls required by the action plan have led to significant reductions in PM2.5, PM10, NO2, SO2, and CO from 2013 to 2017 of approximately 34 %, 24 %, 17 %, 68 %, and 33 %, respectively, after meteorological correction. The marked decrease in PM2.5 and SO2 is largely attributable to a reduction in coal combustion. Our results indicate that the action plan has been highly effective in reducing the primary pollution emissions and improving air quality in Beijing. The action plan offers a successful example for developing air quality policies in other regions of China and other developing countries.


Sign in / Sign up

Export Citation Format

Share Document