scholarly journals SOLUTION OF MATHEMATICAL MODEL FOR TRACKED VEHICLE MOVEMENT UNDER DIFFERENT CONTROL ACTIONS

2017 ◽  
Vol 0 (40) ◽  
pp. 94
Author(s):  
S. Volosnikov
2019 ◽  
Vol 15 (2) ◽  
pp. 618-625
Author(s):  
Nikulin Artem Anatolyevich ◽  
Bychkov Dmitriy Sergeevich ◽  
Generalova Alexandra Alexandrovna

Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 890
Author(s):  
Paolo Di Giamberardino ◽  
Rita Caldarella ◽  
Daniela Iacoviello

This paper addresses the problem of describing the spread of COVID-19 by a mathematical model introducing all the possible control actions as prevention (informative campaign, use of masks, social distancing, vaccination) and medication. The model adopted is similar to SEIQR, with the infected patients split into groups of asymptomatic subjects and isolated ones. This distinction is particularly important in the current pandemic, due to the fundamental the role of asymptomatic subjects in the virus diffusion. The influence of the control actions is considered in analysing the model, from the calculus of the equilibrium points to the determination of the reproduction number. This choice is motivated by the fact that the available organised data have been collected since from the end of February 2020, and almost simultaneously containment measures, increasing in typology and effectiveness, have been applied. The characteristics of COVID-19, not fully understood yet, suggest an asymmetric diffusion among countries and among categories of subjects. Referring to the Italian situation, the containment measures, as applied by the population, have been identified, showing their relation with the government's decisions; this allows the study of possible scenarios, comparing the impact of different possible choices.


The paper presents the mathematical model and the technique of computer imitation of a vehicle movement on bend. Research of roadability and stability of the truck and the schedules illustrating change of characteristics of the steered movement have been obtained. The critical modes of the movement causing separation of wheels from road surface and side slippage have been defined. Speed limit of the steered movement on trajectory of the set curvature have been determined. Keywords vehicle, wheel, cross and longitudinal reactions of the road, inertia force, inertial moment, trajectory of a vehicle movement, angles of withdrawal of wheels, spring weight angle of heel, side slippage, vehicle drift


2020 ◽  
pp. 29-33
Author(s):  
S. V. Kondakov ◽  
O.O. Pavlovskaya ◽  
I.D. Ivanov ◽  
A.R. Ishbulatov

A method for controlling the curvilinear movement of a high-speed tracked vehicle in a skid without loss of stability is proposed. The mathematical model of the vehicle is refined. With the help of simulation modeling, a control algorithm is worked out when driving in a skid. The effectiveness of vehicle steering at high speed outside the skid is shown. Keywords: controlled skid, dynamic stability, steering pole displacement, hydrostatic transmission, automatic system, fuel supply. [email protected]


2021 ◽  
Vol 1 (2) ◽  
pp. 51-62
Author(s):  
B.V. Padalkin ◽  

The purpose of the study is to increase the completeness and reliability of approaches to deter-mining the components of the cornering resistance a tracked vehicle, as well as to create a method for their assessment, which will be suitable for practical calculations. The article analyzes two components of the moment of cornering resistance of the tracked vehi-cle, which can be distinguished if we consider the interaction of the caterpillar with the support base through separate contact spots (active sections of the tracks located under the road wheels). The first component arises from the linear movement of the active sections of the tracks. The second is caused by the rotational movement of the contact patch about the vertical axis. The paper presents a mathematical model of the interaction of the propeller and a dense support base, which makes it possible to study the dependence of the components of the moment of corner-ing resistance on the geometric parameters of the undercarriage of a tracked vehicle. The horizontal reaction force in this case is presented as a function of the slip coefficient. The possibility of realiz-ing various adhesion qualities of the propulsion unit in the longitudinal and transverse directions of sliding is provided. The model assumes a preliminary division of the contact patch into a finite number of elementary areas. Since the number of elementary sites affects the result, the article con-ducted a study to determine the minimum number of sites to ensure acceptable accuracy. An analysis of the expressions available in the literature was carried out to determine the speci-fied component of the cornering resistance. The new empirical relationships that better agree with the mathematical model were proposed. The study of several existing tracked vehicles, differing in the mass and size of the track support surface, made it possible to conclude that it is advisable to take into account the moment of cornering resistance of the contact patch for various types of tracked vehicles.


2019 ◽  
Vol 1 (1) ◽  
pp. 37-42
Author(s):  
Konrad Krzysztoszek

The article presents a mathematical model of electric traction vehicle movement in a given power supply area. Starting from the presentation of the basic features of the 3 kV DC traction power supply system used in Poland, the author presents a simulation model of electric traction vehicles movement, which allows to determine the mobility and current - voltage possibilities on a selected railway line. The obtained simulation results fully confirm the possibility of using the model as an aid in the design, modernization or diagnostics of existing railway lines and train traffic.


Sign in / Sign up

Export Citation Format

Share Document