Development of Mathematical Model of Ground Unmanned Vehicle Movement

2019 ◽  
Vol 15 (2) ◽  
pp. 618-625
Author(s):  
Nikulin Artem Anatolyevich ◽  
Bychkov Dmitriy Sergeevich ◽  
Generalova Alexandra Alexandrovna

The paper presents the mathematical model and the technique of computer imitation of a vehicle movement on bend. Research of roadability and stability of the truck and the schedules illustrating change of characteristics of the steered movement have been obtained. The critical modes of the movement causing separation of wheels from road surface and side slippage have been defined. Speed limit of the steered movement on trajectory of the set curvature have been determined. Keywords vehicle, wheel, cross and longitudinal reactions of the road, inertia force, inertial moment, trajectory of a vehicle movement, angles of withdrawal of wheels, spring weight angle of heel, side slippage, vehicle drift


Author(s):  
A. S. Akopov ◽  
N. K. Khachatryan ◽  
L. A. Beklaryan ◽  
A. L. Beklaryan

A control system for ground unmanned vehicles is presented, using fuzzy clustering methods for making decisions at an individual level. A new approach to the management of ground unmanned vehicles has been developed, taking into account the state of vehicles in a dense traffic, in particular, the presence of road accidents, the appearance of traffic congestion (high density clusters), etc. An important advantage of this approach is the description of the rules for the interaction of various agents with each other and the external environment within the framework of the final decision-making system of individual agents without the need for a complex computational procedure for identifying the potentials of various forces of the system as a whole. In particular, such rules can be described using systems of differential equations with a variable structure, taking into account all the variety of possible interactions and collisions (potential collisions) between different (moving or stationary) objects. A key feature of the proposed model is the use of the concept of the radius of the agent’s personal space, which explains the effects of turbulence and crush. In this case, the radius of the agent’s personal space is a function of the density of vehicles. As a result, a model of unmanned vehicle movement is developed.


2019 ◽  
Vol 1 (1) ◽  
pp. 37-42
Author(s):  
Konrad Krzysztoszek

The article presents a mathematical model of electric traction vehicle movement in a given power supply area. Starting from the presentation of the basic features of the 3 kV DC traction power supply system used in Poland, the author presents a simulation model of electric traction vehicles movement, which allows to determine the mobility and current - voltage possibilities on a selected railway line. The obtained simulation results fully confirm the possibility of using the model as an aid in the design, modernization or diagnostics of existing railway lines and train traffic.


2021 ◽  
Vol 346 ◽  
pp. 03103
Author(s):  
Evgeniy Sarach ◽  
Alexander Tsipilev ◽  
Igor Smirnov

Environmental pollution is one of the most crucial problems in modern world. The toughening of emission standards for toxic fumes, which appear due to the combustion of fossil fuels in internal combustion engines, forces manufacturers to reduce fuel consumption, for example, via more rational use of the internal combustion engine capabilities. This paper is devoted to developing a control algorithm selection technique for economy class passenger car robotic transmission in the conditions of an urban cycle, using Lada Vesta SW Cross as a research subject. At the beginning of the paper, vehicle movement imitational mathematical model implementation, which was developed using LMS Imagine. Lab Amesim program complex. is shown. Also the main assumptions and parameters of engines, cooling systems, transmissions and chassis are given. Then imitational mathematical model verification results, which were processed by comparing movement computer simulation results with the vehicle passport data, are shown. Imitational mathematical model demonstrates the car behavior adequately and very precisely, which means it can be used for vehicle fuel efficiency research. In the main part of the paper, vehicle movement research is conducted in case of three different versions of the internal combustion engine (which has 1,4-, 1,6- and 1,8-liters volume) used in an urban cycle INRETS urbanfluide2. It is clearly shown that the lowest consumption is achieved by reducing the acceleration and braking dynamics via “early” gear shifting, and the crankshaft rotation speed at the corresponding moment of the shift has to be selected for each gear separately. Based on the research results, a switching algorithm and its selection technique, which takes the throttle valve opening degree and the type of the internal combustion engine external speed characteristic into consideration, are presented. In conclusion, this paper presents the results of vehicle movement imitational mathematical modeling in the urban cycle with a modified robotic transmission control algorithm. It is clear that this algorithm can reduce fuel consumption in the urban cycle by 12-20%, depending on the engine volume.


2006 ◽  
Vol 113 ◽  
pp. 235-240 ◽  
Author(s):  
Robertas Pečeliūnas ◽  
Olegas Prentkovskis

The main goals of the work are to define consistent patterns of impacts exercised by vibration of the vehicle in emergency braking on the vehicle’s movement mode and on the braking distance and to analyze the formation of oscillation. Besides, it is aimed to extend expert’s opportunities for modeling vehicle movement for investigation of accidents’ circumstances related to vehicle braking with the aid of the developed models. A mathematical model of impact exercised by bumper’s characteristics on the vehicle’s braking process has been designed, enabling the determination of coefficients of longitudinal relative forces of the vehicle’s front and rear axles, which depend on the road’s pavement and its condition. The obtained research results extend the vehicle vibration theory in transitional movement modes, which are used in the design and improvement of vehicle suspensions, as well as in traffic accident’s investigation and improvement of methodology of their expertise calculations.


Author(s):  
Serhii Povaliaiev ◽  
Olexii Saraiev

Problem. During the reconstruction of the circumstances of road traffic accidents with vehicles overturning, difficulties arise with determining the parameters of vehicles in the process of their overturning. This is due to the fact that the recommended calculation methods are often simplified. The main focus of such techniques is to determine the minimum speed of vehicles, which leads to their overturning. In fact, the speed of vehicles before overturning can be significantly higher. Goal. This paper is dedicated to developing mathematical model of overturning vehicles that makes possible to determine not only the conditions for overturning vehicles, but also other parameters of the vehicle movement in the process of overturning. Methodology. The overturning of the vehicle occurs as a result of the action of inertial forces after collision with an immovable side obstacle. In this case, the moment from the force of gravity of the vehicle keeps it from overturning. In the process of overturning the vehicle, the moment from the force of gravity decreases due to the decrease in the arm of the force of gravity. To compile a mathematical model, the basic equation of dynamics during rotational motion was used. The mathematical model of a vehicle overturning is written in the form of a nonlinear homogeneous second order differential equation. An analytical solution of this equation is obtained. Results. Developed mathematical model makes possible to determine not only the conditions for overturning vehicles, but also other parameters of the vehicle movement from the moment the center of mass begins to rise to the moment of its maximum rise in the process of overturning. For a particular case, when the critical speed of a vehicle during its overturning is determined, the developed mathematical model fully corresponds to the mathematical model based on the law of conservation of energy. For a specific vehicle, numerical results were obtained that fully correspond to the physics of the overturning process.


2013 ◽  
Vol 336-338 ◽  
pp. 480-483
Author(s):  
Guo Kai Xu ◽  
Tao Zhang ◽  
Xiu Chun Zhao ◽  
Juan Wang

Model for drive system of four-wheel-drive electric vehicle was investigated. By combing the balance equation for the vehicle movement with the equation of motor mechanical properties, a mathematical model of driving system of electric vehicle was established, PI control strategy was used for the optimal control and the model was simulated by the software Matlab/Simulink. The simulation results show that the mathematical model of driving system of the electric vehicle can represent the vehicle running states accurately.


2016 ◽  
Vol 822 ◽  
pp. 54-59 ◽  
Author(s):  
Loreta Simniceanu ◽  
Dumitru Neagoe ◽  
Mario Trotea ◽  
Mihaela Liana Bogdan ◽  
Augustin Constantinescu

This paper presents a plane equivalent model of the vehicle and its mathematical model attached. The mathematical model is under a form of four differential equations system of order 1, in order to analyze the dynamic behaviour of the vehicle movement. Its goal is to determine the ranges of speed for that movement is stable or is unstable, or having chaotic character. The authors consider being necessary to know the conditions in which movements occur chaotic movements to avoid them through constructive or functional limitations. Speed ​​values ​​are identified for the behaviour of the system is placed in the quasiperiodic movements field or exceeding these movements trough chaos and are highlighted by the specific instruments: the trajectories in the phase plane, Poincare section and power spectra.


Sign in / Sign up

Export Citation Format

Share Document