Tramadol Hydrochloride and Acetaminophen Tablets

2021 ◽  
2009 ◽  
Vol 235 (4) ◽  
pp. 404-404
Author(s):  
Christine M. Egger ◽  
Marcy J. Souza ◽  
Cheryl B. Greenacre ◽  
Sherry K. Cox ◽  
Barton W. Rohrbach

Author(s):  
Kamble Ravindra K. ◽  
Chauhan Chetan S. ◽  
Kamble Priyadarshani R. ◽  
Naruka Pushpendra S.

The main aim of the present work was to develop the microcapsules of tramadol hydrochloride for the oral sustained release drug delivery. Tramadol hydrochloride a BCS class I drug a centrally acting synthetic analgesic was complexed with Indion 254 ion exchange resin. The microcapsules were prepared by encapsulating the prepared resinates by o/o solvent evaporation technique. In the investigation 32 full factorial design was used to investigate the joint influence of two formulation variable amount of eudragit RS 100 and plasticized PEG 400. The results of multiple linear regression analysis indicated that for obtaining a sustained release drug delivery the optimum concentrations of both the plasticizer and coating solution to be used. The factorial models were used to prepare optimized microcapsules and optimized formulations showed sustained release profiles for the extended period of more than 12 hrs. From the present investigations concluded that resinate microcapsules of highly water soluble drug can provide controlled release of drug for extended period.Key Words: Tramadol hydrochloride, ion exchange resinate, microcapsules, sustained release


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1187
Author(s):  
Nayla Francine Garcia Pastório ◽  
Camila Felix Vecchi ◽  
Rafaela Said dos Santos ◽  
Marcos Luciano Bruschi

Tramadol hydrochloride is a synthetic analogue of codeine and shows activity on the central nervous system as an opioid agonist and inhibitor of serotonin and norepinephrine reuptake. It has been used for controlling moderate to severe pain. Mucoadhesive fast-dissolving films can present greater drug availability and patient acceptance when compared to the systems of peroral administration. The films were prepared using the solvent casting method with ethylcellulose, polyvinylpyrrolidone and poly(vinyl alcohol). The effect of each polymer concentration was investigated using a 2³ factorial design with repetition at the central point. The formulations were subjected to physicochemical, mechanical, ex vivo mucoadhesive and in vitro drug release profile analysis. These properties were dependent on the polymeric composition (independent factors) of each system. The optimized formulations showed good macroscopic characteristics, improved resistance to bending, rigidity, rapid swelling up to 60 s, improved mechanical and mucoadhesive characteristics, and also fast dissolving and tramadol release. The optimized formulations constitute platforms and strategies to improve the therapy of tramadol with regard to availability at the site of application, considering the necessity of rapid pain relief, and show potential for in vivo evaluation.


2009 ◽  
Vol 5 (1) ◽  
pp. 28-33 ◽  
Author(s):  
Mohammad Ganjali ◽  
Taherehsadat Razavi ◽  
Farnoush Faridbod ◽  
Siavash Riahi ◽  
Parviz Norouzi

2009 ◽  
Vol 59 (1) ◽  
pp. 15-30 ◽  
Author(s):  
Pramod Kumar ◽  
Sanjay Singh ◽  
Brahmeshwar Mishra

Development and biopharmaceutical evaluation of extended release formulation of tramadol hydrochloride based on osmotic technologyExtended release formulation of tramadol hydrochloride (TRH) based on osmotic technology was developed and evaluated. Target release profile was selected and different variables were optimized to achieve it. Formulation variables such as the level of swellable polymer, plasticizer and the coat thickness of semipermeable membrane (SPM) were found to markedly affect drug release. TRH release was directly proportional to the levels of plasticizer but inversely proportional to the levels of swellable polymer and coat thickness of SPM. Drug release from developed formulations was independent of pH and agitation intensity but dependent on osmotic pressure of the release media.In vivostudy was also performed on six healthy human volunteers and various pharmacokinetic parameters (cmax,tmax,AUC0-24,MRT) and relative bioavailability were calculated. Thein vitroandin vivoresults were compared with the performance of two commercial TRH tablets. The developed formulation provided more prolonged and controlled TRH release compared to the marketed formulation.In vitro-in vivocorrelation (IVIVC) was analyzed according to the Wagner-Nelson method. The optimized formulation (batch IVB) exhibited good IVIV correlation (R= 0.9750). The manufacturing procedure was found to be reproducible and formulations were stable over 6 months of accelerated stability testing.


Sign in / Sign up

Export Citation Format

Share Document