scholarly journals Design of Mucoadhesive Strips for Buccal Fast Release of Tramadol

Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1187
Author(s):  
Nayla Francine Garcia Pastório ◽  
Camila Felix Vecchi ◽  
Rafaela Said dos Santos ◽  
Marcos Luciano Bruschi

Tramadol hydrochloride is a synthetic analogue of codeine and shows activity on the central nervous system as an opioid agonist and inhibitor of serotonin and norepinephrine reuptake. It has been used for controlling moderate to severe pain. Mucoadhesive fast-dissolving films can present greater drug availability and patient acceptance when compared to the systems of peroral administration. The films were prepared using the solvent casting method with ethylcellulose, polyvinylpyrrolidone and poly(vinyl alcohol). The effect of each polymer concentration was investigated using a 2³ factorial design with repetition at the central point. The formulations were subjected to physicochemical, mechanical, ex vivo mucoadhesive and in vitro drug release profile analysis. These properties were dependent on the polymeric composition (independent factors) of each system. The optimized formulations showed good macroscopic characteristics, improved resistance to bending, rigidity, rapid swelling up to 60 s, improved mechanical and mucoadhesive characteristics, and also fast dissolving and tramadol release. The optimized formulations constitute platforms and strategies to improve the therapy of tramadol with regard to availability at the site of application, considering the necessity of rapid pain relief, and show potential for in vivo evaluation.

2020 ◽  
Vol 10 (3) ◽  
pp. 185-196
Author(s):  
Sudha B. Patil ◽  
Syed Z. Inamdar ◽  
Kakarla R. Reddy ◽  
Anjanapura V. Raghu ◽  
Krishnamachari G. Akamanchi ◽  
...  

Background and Objectives: To develop electro-sensitive transdermal drug delivery systems (ETDDS) using polyacrylamide-grafted-pectin (PAAm-g-PCT) copolymer hydrogel for rivastigmine delivery. Methods: Free radical polymerization and alkaline hydrolysis technique was employed to synthesize PAAm-g-PCT copolymer hydrogel. The PAAm-g-PCT copolymeric hydrogel was used as a reservoir and cross-linked blend films of PCT and poly(vinyl alcohol) as rate-controlling membranes (RCMs) to prepare ETDDS. Results: The pH of the hydrogel reservoir was found to be in the range of 6.81 to 6.93 and drug content was 89.05 to 96.29%. The thickness of RCMs was in the range of 51 to 99 μ and RCMs showed permeability behavior against water vapors. There was a reduction in the water vapor transmission rate as the glutaraldehyde (GA) concentration was increased. The drug permeation rate from the ETDDS was enhanced under the influence of electric stimulus against the absence of an electric stimulus. The increase in flux by 1.5 fold was recorded with applied electric stimulus. The reduction in drug permeability observed when the concentration of GA was increased. Whereas, the permeability of the drug was augmented as an electric current was changed from 2 to 8 mA. The pulsatile drug release under “on– off” cycle of electric stimulus witnessed a faster drug release under ‘on’ condition and it was slow under ‘off’ condition. The alteration in skin composition after electrical stimulation was confirmed through histopathology studies. Conclusion: The PAAm-g-PCT copolymer hydrogel is a useful carrier for transdermal drug delivery activated by an electric signal to provide on-demand release of rivastigmine.


2021 ◽  
pp. 088391152199784
Author(s):  
Loveleen Kaur ◽  
Ajay Kumar Thakur ◽  
Pradeep Kumar ◽  
Inderbir Singh

Present study was aimed to synthesize and characterize Chitosan-Catechol conjugates and to design and develop mucoadhesive pellets loaded with lafutidine. SEM images indicated the presence of fibrous structures responsible for enhanced mucoadhesive potential of Chitosan-Catechol conjugates. Thermodynamic stability and amorphous nature of conjugates was confirmed by DSC and XRD studies respectively. Rheological studies were used to evaluate polymer mucin interactions wherein strong interactions between Chitosan-Catechol conjugate and mucin was observed in comparison to pristine chitosan and mucin. The mucoadhesion potential of Chitosan-Catechol (Cht-C) versus Chitosan (Cht) was assessed in silico using molecular mechanics simulations and the results obtained were compared with the in vitro and ex vivo results. Cht-C/mucin demonstrated much higher energy stabilization (∆E ≈ −65 kcal/mol) as compared to Cht/mucin molecular complex. Lafutidine-loaded pellets were prepared from Chitosan (LPC) and Chitosan-Catechol conjugates (LPCC) and were evaluated for various physical properties viz. flow, circularity, roundness, friability, drug content, particle size and percent mucoadhesion. In vitro drug release studies on LPC and LPCC pellets were performed for computing t50%, t90% and mean dissolution time. The values of release exponent from Korsmeyer-Peppas model was reported to be 0.443 and 0.759 for LPC and LPCC pellets suggesting Fickian and non-Fickian mechanism representing drug release, respectively. In vivo results depicted significant controlled release and enhanced residence of the drug after being released from the chitosan-catechol coated pellets. Chitosan-Catechol conjugates were found to be a promising biooadhesive polymer for the development of various mucoadhesive formulations.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 969
Author(s):  
Xingyi Jiang ◽  
Qinchun Rao

Fish allergy is a life-long food allergy whose prevalence is affected by many demographic factors. Currently, there is no cure for fish allergy, which can only be managed by strict avoidance of fish in the diet. According to the WHO/IUIS Allergen Nomenclature Sub-Committee, 12 fish proteins are recognized as allergens. Different processing (thermal and non-thermal) techniques are applied to fish and fishery products to reduce microorganisms, extend shelf life, and alter organoleptic/nutritional properties. In this concise review, the development of a consistent terminology for studying food protein immunogenicity, antigenicity, and allergenicity is proposed. It also summarizes that food processing may lead to a decrease, no change, or even increase in fish antigenicity and allergenicity due to the change of protein solubility, protein denaturation, and the modification of linear or conformational epitopes. Recent studies investigated the effect of processing on fish antigenicity/allergenicity and were mainly conducted on commonly consumed fish species and major fish allergens using in vitro methods. Future research areas such as novel fish species/allergens and ex vivo/in vivo evaluation methods would convey a comprehensive view of the relationship between processing and fish allergy.


2018 ◽  
Vol Volume 13 ◽  
pp. 1059-1079 ◽  
Author(s):  
Irhan Abu Hashim ◽  
Noha Abo El-Magd ◽  
Ahmed El-Sheakh ◽  
Mohammed Hamed ◽  
Abd El-Gawad Abd El-Gawad

Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1483
Author(s):  
Emily A. Bates ◽  
John R. Counsell ◽  
Sophie Alizert ◽  
Alexander T. Baker ◽  
Natalie Suff ◽  
...  

The human adenovirus phylogenetic tree is split across seven species (A–G). Species D adenoviruses offer potential advantages for gene therapy applications, with low rates of pre-existing immunity detected across screened populations. However, many aspects of the basic virology of species D—such as their cellular tropism, receptor usage, and in vivo biodistribution profile—remain unknown. Here, we have characterized human adenovirus type 49 (HAdV-D49)—a relatively understudied species D member. We report that HAdV-D49 does not appear to use a single pathway to gain cell entry, but appears able to interact with various surface molecules for entry. As such, HAdV-D49 can transduce a broad range of cell types in vitro, with variable engagement of blood coagulation FX. Interestingly, when comparing in vivo biodistribution to adenovirus type 5, HAdV-D49 vectors show reduced liver targeting, whilst maintaining transduction of lung and spleen. Overall, this presents HAdV-D49 as a robust viral vector platform for ex vivo manipulation of human cells, and for in vivo applications where the therapeutic goal is to target the lung or gain access to immune cells in the spleen, whilst avoiding liver interactions, such as intravascular vaccine applications.


INDIAN DRUGS ◽  
2015 ◽  
Vol 52 (12) ◽  
pp. 23-33
Author(s):  
R. Kanekar ◽  
◽  
P. M. Dandagi ◽  
A. P. Gadad

The objective of the present study was to prepare and evaluate fast-dissolving oral films of prochlorperazine maleate (PCM), in order to enhance the bioavailability of the drug and to provide rapid onset of action thereby improving patient compliance. The solubility of the drug was increased by preparing inclusion complex with 2-hydroxypropyl-β-cyclodextrin (2HPβCD) and then incorporating it into the fast dissolving films. The fast-dissolving films of PCM were prepared by solvent casting method using different film forming polymers such as HPMC E15 and HPMC E5, either as single polymer or combination of the two. The film formulations were evaluated for various physico-chemical parameters. All formulations released more than 85% of the drug within 15 minutes. Formulation F4 showed best in vitro drug release profile. From the ex vivo study it was found that 94.79% of drug permeated through the porcine oral mucosa from the optimized formulation F4 within 60 mins.


2021 ◽  
Vol 4 (2) ◽  
pp. 99-109
Author(s):  
Priyanka Singh ◽  
Amit Kumar Shrivastava ◽  
Sachin Kumar ◽  
Manish Dhar Dwivedi

This study aimed to improve the dissolution rate of aceclofenac and release the drug in a controlled manner over a period of 24 hours. Matrix tablets were prepared by direct compression method, using hydrophilic polymers (HPMC/guar gum). Matrix tablets were prepared by wet granulation method using different hydrophilic polymers (HPMC/guar gum). Tablets were evaluated for in vitro drug release profile in phosphate buffer with pH 6.8 (without enzymes). The thickness and hardness of prepared tablets were 3.23 ± 0.035 to 3.28 ± 0.008 mm and 3.26 ± 0.115 to 3.60 ± 0.200 kg/cm2, respectively. The friability was within the acceptable limits of pharmacopoeial specifications (0.31 to 0.71%), which indicates the good mechanical strength of the tablets. Drug release was retarded with an increase in polymer concentration due to the gelling property of polymers. The in vitro drug release from the proposed system was best explained by Higuchi’s model, indicating that drug release from tablets displayed a diffusion-controlled mechanism. The results clearly indicate that guar gum could be a potential hydrophilic carrier in developing oral controlled drug delivery systems. Based on the study results, formulations F8 was selected as the best formulation.


2016 ◽  
Vol 113 (26) ◽  
pp. 7041-7046 ◽  
Author(s):  
Sujit S. Datta ◽  
Asher Preska Steinberg ◽  
Rustem F. Ismagilov

Colonic mucus is a key biological hydrogel that protects the gut from infection and physical damage and mediates host–microbe interactions and drug delivery. However, little is known about how its structure is influenced by materials it comes into contact with regularly. For example, the gut abounds in polymers such as dietary fibers or administered therapeutics, yet whether such polymers interact with the mucus hydrogel, and if so, how, remains unclear. Although several biological processes have been identified as potential regulators of mucus structure, the polymeric composition of the gut environment has been ignored. Here, we demonstrate that gut polymers do in fact regulate mucus hydrogel structure, and that polymer–mucus interactions can be described using a thermodynamic model based on Flory–Huggins solution theory. We found that both dietary and therapeutic polymers dramatically compressed murine colonic mucus ex vivo and in vivo. This behavior depended strongly on both polymer concentration and molecular weight, in agreement with the predictions of our thermodynamic model. Moreover, exposure to polymer-rich luminal fluid from germ-free mice strongly compressed the mucus hydrogel, whereas exposure to luminal fluid from specific-pathogen-free mice—whose microbiota degrade gut polymers—did not; this suggests that gut microbes modulate mucus structure by degrading polymers. These findings highlight the role of mucus as a responsive biomaterial, and reveal a mechanism of mucus restructuring that must be integrated into the design and interpretation of studies involving therapeutic polymers, dietary fibers, and fiber-degrading gut microbes.


Sign in / Sign up

Export Citation Format

Share Document