〈1106.1〉 Immunogenicity Assays—Design and Validation of Assays to Detect Anti-Drug Neutralizing Antibody

2021 ◽  
Vol 23 (6) ◽  
Author(s):  
Andrew F. Dengler ◽  
Rachel Weiss ◽  
Tiffany Truong ◽  
Susan C. Irvin ◽  
Nidhi Gadhia ◽  
...  

AbstractMonoclonal antibodies (mAbs) are a leading class of biotherapeutics. In oncology, patients often fail on early lines of biologic therapy to a specific target. Some patients may then enroll in a new clinical trial with a mAb specific for the same target. Therefore, immunoassays designed to quantify the current mAb therapy or assess immunogenicity to the drug may be susceptible to cross-reactivity or interference with residual prior biologics. The impact of two approved anti-PD-1 mAbs, pembrolizumab and nivolumab, was tested in several immunoassays for cemiplimab, another approved anti-PD-1 mAb. The methods included a target-capture drug concentration assay, a bridging anti-drug antibody (ADA) assay and a competitive ligand-binding neutralizing antibody (NAb) assay. We also tested bioanalytical strategies to mitigate cross-reactivity or interference in these assays from other anti-PD-1 biologics. Both pembrolizumab and nivolumab cross-reacted in the cemiplimab drug concentration assay. This was mitigated by addition of antibodies specific to pembrolizumab or nivolumab. ADA specific for pembrolizumab and nivolumab did not interfere in the cemiplimab ADA assay. However, pembrolizumab and nivolumab generated a false-positive response in a target-capture NAb assay. Our results demonstrate that similar exogenous pre-existing anti-PD-1 mAbs (biotherapeutics) such as pembrolizumab and nivolumab are detected and accurately quantified in the cemiplimab drug concentration assay. However, once steady state is achieved for the new therapy, prior biologics would likely not be detected. Cross-reactivity and interference in immunoassays from previous treatment with class-specific biotherapeutic(s) pose significant bioanalytical challenges, especially in immuno-oncology. Graphical abstract


Author(s):  
Hannah R. Brown ◽  
Tammy L. Donato ◽  
Halldor Thormar

Measles virus specific immunoglobulin G (IgG) has been found in the brains of patients with subacute sclerosing panencephalitis (SSPE), a slowly progressing disease of the central nervous system (CNS) in children. IgG/albumin ratios indicate that the antibodies are synthesized within the CNS. Using the ferret as an animal model to study the disease, we have been attempting to localize the Ig's in the brains of animals inoculated with a cell associated strain of SSPE. In an earlier report, preliminary results using Protein A conjugated to horseradish peroxidase (PrAPx) (Dynatech Diagnostics Inc., South Windham, ME.) to detect antibodies revealed the presence of immunoglobulin mainly in antibody-producing plasma cells in inflammatory lesions and not in infected brain cells.In the present experiment we studied the brain of an SSPE ferret with neutralizing antibody titers of 1:1024 in serum and 1:512 in CSF at time of sacrifice 7 months after i.c. inoculation with SSPE measles virus-infected cells. The animal was perfused with saline and portions of the brain and spinal cord were immersed in periodate-lysine-paraformaldehyde (P-L-P) fixative. The ferret was not perfused with fixative because parts of the brain were used for virus isolation.


1995 ◽  
Vol 73 (01) ◽  
pp. 039-048 ◽  
Author(s):  
A Bierhaus ◽  
Ch J Hemmer ◽  
N Mackman ◽  
R Kutob ◽  
R Ziegler ◽  
...  

SummarySerum from patients with P. falciparum malaria at day 1 (pretherapy) induces tissue factor (TF) in cultured endothelial cells. TF induction depends on de novo transcription as shown in Nuclear Run On assays. Electrophoretic mobility shift assays demonstrated binding of AP-1 and NF- κB/Rel proteins to their recognition sites in the TF promotor. After therapy (day 28), stimulation of TF antigen by patient serum is reduced by 70%. When serum obtained before and after therapy was compared, a decrease of NF-κB activation was evident. Activation of NF-κB-like proteins was in part dependent on TNFα in patient serum, since a TNFα neutralizing antibody reduced induction of TF transcription and translation and induction of NF-κB-like proteins. Induction of TF activity was suppressed by pDTC, an inhibitor of NF-κB activation. When different promotor constructs of the TF gene were tested, induction was dependent upon the presence of the intact NF-κB-like binding site in the TF promotor. A mutant with deleted NF-κB, but intact AP-1 sites was not inducible. Mutation of the AP-1 sites did not prevent induction, but reduced inducibility by pretherapy serum. Therefore, NF-κB/Rel proteins are responsible for induction of TF transcription by pretherapy serum, but AP-1 is needed for highest inducibility. The effect of antiparasitic therapy on the induction of TF by serum from patients with complicated P. falciparum malaria is dependent on a therapy-mediated loss of activation of NF-κB-like proteins in post-treatment patient serum.


Sign in / Sign up

Export Citation Format

Share Document