〈429〉 Light Diffraction Measurement of Particle Size

2016 ◽  
Vol 5 (1-2) ◽  
pp. 32-37
Author(s):  
András Makó ◽  
József Szabó ◽  
Zsófia Bakacsi ◽  
Sándor Koós ◽  
Gabriella Hauk ◽  
...  

In this research we present the first results how can be used laser diffraction measurement in soil physics practice. The main goals are understanding differences of particle size distribution (PSD) measurments, developing converting methods of PSD data of different determinations. In order to realization of this survey a representative soil database of Hungarian soil types was built up. We compared PSDs of 157 soil samples measured with sieve-pipette method (SPM) and laser diffractometer technique (Malvern Mastersizer 2000) (LDM). Soil textural classes were also determined using the USDA texture triangle. We used the clay/silt fraction boundary values (clay < 0.0066 mm; silt: 0.0066 - 0.05 mm) introduced for the LDM data in order to take them comparable to PSD data determined by the SPM: We got higher similarities of clay and silt fractions of the modified size boundary values. For the used dataset correspondence of texture classes derived from SPM and LDM PSD data, however is not higher than 60%.


Clay Minerals ◽  
1992 ◽  
Vol 27 (1) ◽  
pp. 47-55 ◽  
Author(s):  
M. Hardy

AbstractAn XRD method for measurement of quartz content using ZnO as the internal standard was tested on different particle sizes between 0 and 20 µm. Calibration curves showed a good correlation coefficient for particle-size fractions up to 20 µm; the slope increased for the fractions from 0·7 to 5 µm and was relatively constant for coarser particle sizes. Fine quartz fractions were etched with hydrofluoric acid to remove the surface layer damaged during dry grinding. The use of such etched quartz increased the slopes of the calibration curves for small particle-size fractions and approximated the natural fine quartz fraction much better than the original dry-ground material. The mean of six measurements gave good accuracy provided that the slope of the calibration curve was adjusted for the particular particle-size fraction. This method was used on 0–2 µm, 0–0·2µm and 0·2–2 µm fractions of French silty soils and the results are in agreement with the data from chemical analysis and with the mineralogical interpretation.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Wooje Han ◽  
Byungwook Yoo ◽  
Hyung-Ho Park

Barium titanate (BaTiO3: BTO) nanoparticles (NPs) were synthesized by chlorine-free ambient condition sol (ACS) process using heat reflux at low temperature of 90°C. The size distribution and morphology of BTO NPs were investigated by varying the concentration of tetrabutylammonium hydroxide (TBAH). The crystalline size of BTO NPs was decreased with increasing the amount of TBAH capping agent (average size changes from 54.3 to 38.7 nm for 0 to 0.5 M TBAH in X-ray diffraction measurement). The particle size of BTO NPs was principally controlled by a synthetic control of butyl chain of TBAH and also a steric effect of excess amount of TBAH. The dielectric constant of BTO NPs was decreased from 152 to 144 at 1 MHz after an adoption of TBAH capping agent with almost uniform dielectric loss (<0.027). But the dielectric constant of BTO NPs synthesized with various molar ratio of TBAH (0.1, 0.3, and 0.5) did not show a distinguished decrease. At the particle size range in this experiment, the dielectric behavior of BTO NPs was found to be mainly dependent on the TBAH ligands at BTO NPs formed during capping process, not on the size of BTO NPs.


1990 ◽  
Vol 6 (3) ◽  
pp. 243-249 ◽  
Author(s):  
E. D. Youngborg ◽  
T. E. Pruitt ◽  
M. J. Smith ◽  
D. W. Netzer

1992 ◽  
Vol 283 ◽  
Author(s):  
B. J. Heuser ◽  
S. Spooner ◽  
C. J. Glinka ◽  
D. L. Gilliam ◽  
N. A. Winslow ◽  
...  

ABSTRACTSmall-angle neutron scattering (SANS) measurements of four electrochemically etched, porous silicon (PS) samples have been performed over a wide wavevector transfer (Q) range. The intermediate to high Q results can be modeled with a non-particulate, random phase model. Correlation length scales on the order of 1 to 2 nm thought to characterize the PS skeleton have been deduced from the SANS data. The microstructural anisotropy was studied tilting two of the samples with respect to the neutron beam. These samples exhibited an asymmetric scattering pattern at intermediate Q (0.1 ≤ Q ≥ 0.6 nm-1) in this condition. Photoluminescence spectra from all four samples have been recorded as well. A correlation appears to exist between the SANS and photoluminescence measurements. An x-ray diffraction measurement of one sample demonstrates that the PS layer retains the silicon lattice structure. Significant peak broadening is observed that we interpreted as a quasi-particle size effect The PS particle size calculated from the x-ray diffraction measurement is equal to the correlation length obtained in the SANS measurement.


Author(s):  
C. J. Chan ◽  
K. R. Venkatachari ◽  
W. M. Kriven ◽  
J. F. Young

Dicalcium silicate (Ca2SiO4) is a major component of Portland cement. It has also been investigated as a potential transformation toughener alternative to zirconia. It has five polymorphs: α, α'H, α'L, β and γ. Of interest is the β-to-γ transformation on cooling at about 490°C. This transformation, accompanied by a 12% volume increase and a 4.6° unit cell shape change, is analogous to the tetragonal-to-monoclinic transformation in zirconia. Due to the processing methods used, previous studies into the particle size effect were limited by a wide range of particle size distribution. In an attempt to obtain a more uniform size, a fast quench rate involving a laser-melting/roller-quenching technique was investigated.The laser-melting/roller-quenching experiment used precompacted bars of stoichiometric γ-Ca2SiO4 powder, which were synthesized from AR grade CaCO3 and SiO2xH2O. The raw materials were mixed by conventional ceramic processing techniques, and sintered at 1450°C. The dusted γ-Ca2SiO4 powder was uniaxially pressed into 0.4 cm x 0.4 cm x 4 cm bars under 34 MPa and cold isostatically pressed under 172 MPa. The γ-Ca2SiO4 bars were melted by a 10 KW-CO2 laser.


Author(s):  
Sooho Kim ◽  
M. J. D’Aniello

Automotive catalysts generally lose-agtivity during vehicle operation due to several well-known deactivation mechanisms. To gain a more fundamental understanding of catalyst deactivation, the microscopic details of fresh and vehicle-aged commercial pelleted automotive exhaust catalysts containing Pt, Pd and Rh were studied by employing Analytical Electron Microscopy (AEM). Two different vehicle-aged samples containing similar poison levels but having different catalytic activities (denoted better and poorer) were selected for this study.The general microstructure of the supports and the noble metal particles of the two catalysts looks similar; the noble metal particles were generally found to be spherical and often faceted. However, the average noble metal particle size on the poorer catalyst (21 nm) was larger than that on the better catalyst (16 nm). These sizes represent a significant increase over that found on the fresh catalyst (8 nm). The activity of these catalysts decreases as the observed particle size increases.


Sign in / Sign up

Export Citation Format

Share Document