Cupric Sulfate, Anhydrous

Keyword(s):  
2020 ◽  
Vol 3 (3) ◽  
Author(s):  
Hemalatha D ◽  
Saraswath S

In material science, green method for synthesis of nanomaterials is feasible, cheaper and eco-friendly protocol. To accomplish this phenomenon, present study was aimed to synthesize Copper oxide nanoparticles using leaf extract of Aloevera with two different precursors CuCl2.2H2O (Cupric chloride) and CuSo4.5H2O (Cupric sulfate). The extraction of Aloevera is employed as reducing and stabilizing agent for this synthesis.Copper oxide Nanoparticles is effective use of biomedical application due to their antibacterial function. The synthesized Copper oxide nanoparticles were characterized by X-Ray Diffraction Spectroscopy (XRD), Energy Dispersive Spectroscopy (EDX), FourierTransform Infrared Spectroscopy (FT- IR) and Scanning Electron Microscope(SEM). XRD studies reveal the crystallographic nature of Copper oxide nanoparticles. Furthermore the Copper oxide nanoparticles have good Antibacterial activity against both gram negative (E.Coli, Klebsiella pneumonia) and gram positive (Bacillus cereus, Staphylococcus aureus)bacteria.


Author(s):  
Marina Bährle-Rapp
Keyword(s):  

2020 ◽  
Vol 9 (6) ◽  
pp. 1857
Author(s):  
Chia-Wei Li ◽  
Ai-Ling Hsu ◽  
Chi-Wen C. Huang ◽  
Shih-Hung Yang ◽  
Chien-Yuan Lin ◽  
...  

The reliability of relaxation time measures in synthetic magnetic resonance images (MRIs) of homemade phantoms were validated, and the diagnostic suitability of synthetic imaging was compared to that of conventional MRIs for detecting ischemic lesions. Phantoms filled with aqueous cupric-sulfate (CuSO4) were designed to mimic spin-lattice (T1) and spin-spin (T2) relaxation properties and were used to compare their accuracies and stabilities between synthetic and conventional scans of various brain tissues. To validate the accuracy of synthetic imaging in ischemic stroke diagnoses, the synthetic and clinical scans of 18 patients with ischemic stroke were compared, and the quantitative contrast-to-noise ratios (CNRs) were measured, using the Friedman test to determine significance in differences. Results using the phantoms showed no significant differences in the interday and intersession synthetic quantitative T1 and T2 values. However, between synthetic and referenced T1 and T2 values, differences were larger for longer relaxation times, showing that image intensities in synthetic scans are relatively inaccurate in the cerebrospinal fluid (CSF). Similarly, CNRs in CSF regions of stroke patients were significantly different on synthetic T2-weighted and T2-fluid-attenuated inversion recovery images. In contrast, differences in stroke lesions were insignificant between the two. Therefore, interday and intersession synthetic T1 and T2 values are highly reliable, and discrepancies in synthetic T1 and T2 relaxation times and image contrasts in CSF regions do not affect stroke lesion diagnoses. Additionally, quantitative relaxation times from synthetic images allow better estimations of ischemic stroke onset time, consequently increasing confidence in synthetic MRIs as diagnostic tools for ischemic stroke.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Marta Milewska ◽  
Anna Burdzińska ◽  
Katarzyna Zielniok ◽  
Katarzyna Siennicka ◽  
Sławomir Struzik ◽  
...  

Background. Copper belongs to the essential trace metals that play a key role in the course of cellular processes maintaining the whole body’s homeostasis. As there is a growing interest in transplanting mesenchymal stromal cells (MSCs) into the site of injury to improve the regeneration of damaged tendons, the purpose of the study was to verify whether copper supplementation may have a positive effect on the properties of human adipose tissue-derived MSCs (hASCs) which potentially can contribute to improvement of tendon healing. Results. Cellular respiration of hASCs decreased with increasing cupric sulfate concentrations after 5 days of incubation. The treatment with CuSO4 did not positively affect the expression of genes associated with tenogenesis (COL1α1, COL3α1, MKX, and SCX). However, the level of COL1α1 protein, whose transcript was decreased in comparison to a control, was elevated after a 5-day exposition to 25 μM CuSO4. The content of the MKX and SCX protein in hASCs exposed to cupric sulfate was reduced compared to that of untreated control cells, and the level of the COL3α1 protein remained unchanged. The addition of cupric sulfate to hASCs’ medium increased the activity of lysyl oxidase which was positively correlated with concentration of CuSO4. Moreover, a high level of CuSO4 stimulated the action of intracellular superoxide dysmutase. The hASC secretion profile after a 5-day exposure to 50 μM cupric sulfate differed from that of untreated cells and was similar to the secretion profile of human tenocytes. Additionally, cupric sulfate increased secretion of CXCL12 in hASCs. Furthermore, the exposition to the CuSO4 significantly increased directed migration of human ASCs in a dose-dependent manner. Conclusion. Copper sulfate supplementation can have a beneficial effect on tendon regeneration not by inducing tenogenic differentiation, but by improving the recruitment of MSCs to the site of injury, where they can secrete growth factors, cytokines and chemokines, and prevent the effects of oxidative stress at the site of inflammation, as well as improve the stabilization of collagen fibers, thereby accelerating the process of tendon healing.


1964 ◽  
Vol 67 (7) ◽  
pp. 993-996 ◽  
Author(s):  
Akitsugu Okuwaki ◽  
Atsushi Kanbe ◽  
Taijiro Okabe

1944 ◽  
Vol 21 (8) ◽  
pp. 392
Author(s):  
Herman A. Liebhafsky
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document