Potassium Pyroantimonate TS

2007 ◽  
Vol 18 (2) ◽  
pp. 153-157 ◽  
Author(s):  
Dimitrius Leonardo Pitol ◽  
Flavio Henrique Caetano ◽  
Laurelúcia Orive Lunardi

Bone decalcification is a time-consuming process. It takes weeks and preservation of the tissue structure depends on the quality and velocity of the demineralization process. In the present study, a decalcification methodology was adapted using microwaving to accelerate the decalcification of rat bone for electron microscopic analysis. The ultrastructure of the bone decalcified by microwave energy was observed. Wistar rats were perfused with paraformaldehyde and maxillary segments were removed and fixed in glutaraldehyde. Half of specimens were decalcified by conventional treatment with immersion in Warshawsky solution at 4ºC during 45 days, and the other half of specimens were placed into the beaker with 20 mL of the Warshawsky solution in ice bath and thereafter submitted to irradiation in a domestic microwave oven (700 maximum power) during 20 s/350 W/±37ºC. In the first day, the specimens were irradiated 9 times and stored at 40ºC overnight. In the second day, the specimens were irradiated 20 times changing the solution and the ice after each bath. After decalcification, some specimens were postfixed in osmium tetroxide and others in osmium tetroxide and potassium pyroantimonate. The specimens were observed under transmission electron microscopy. The results showed an increase in the decalcification rate in the specimens activated by microwaving and a reduction of total experiment time from 45 days in the conventional method to 48 hours in the microwave-aided method.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Haidong Wang ◽  
Chongning Li ◽  
Yanghe Luo ◽  
Zhiliang Jiang

The gold nanoparticle reaction of HAuCl4-H2O2 was very slow under 60°C, and the as-prepared graphene oxide nanoribbons (GONRs) exhibited strong catalysis of the reaction to form gold nanoparticles (AuNP) that appeared a resonance Rayleigh scattering (RRS) peak at 550 nm. Upon addition of potassium pyroantimonate (PA) ligand, it was adsorbed on the GONRs surface to inhibit the catalysis to cause the RRS peak decreasing. When the analyte of Na+ was added, the coordination reaction between PA and Na+ took place to form the stable complexes of [Na2(PA)] to release free GONRs catalyst that resulted in the RRS peak increasing linearly. Accordingly, a new and sensitive RRS method for Na+ was established, with a linear range of 0.69-25.8 nmol/L and a detection limit of 0.35 nmol/L Na+.


1971 ◽  
Vol 50 (3) ◽  
pp. 830-839 ◽  
Author(s):  
C. J. Tandler ◽  
A. L. Kierszenbaum

For localization of pyroantimonate-precipitable cations, rat kidney was fixed by perfusion with a saturated aqueous solution of potassium pyroantimonate (pH about 9.2, without addition of any conventional fixative). A remarkably good preservation of the tissue and cell morphology was obtained as well as a consistent and reproducible localization of the insoluble antimonate salts of magnesium, calcium, and sodium. All proximal and distal tubules and glomeruli were delimited by massive electron-opaque precipitates localized in the basement membrane and, to a lesser extent, in adjacent connective tissue. In the intraglomerular capillaries the antimonate precipitate was encountered in the basement membranes and also between the foot processes. In addition to a more or less uniform distribution in the cytoplasm and between the microvilli of the brush border, antimonate precipitates were found in all cell nuclei, mainly between the masses of condensed chromatin. The mitochondria usually contained a few large antimonate deposits which probably correspond to the so-called "dense granules" observed after conventional fixations.


1972 ◽  
Vol 53 (2) ◽  
pp. 483-493 ◽  
Author(s):  
Laura L. Tres ◽  
A. L. Kierszenbaum ◽  
C. J. Tandler

Earlier reports indicated the presence of significant amounts of inorganic salts in the nucleus. In the present study the possibility that this might be related to the transcription process was tested on seminiferous epithelium of the adult mouse, using potassium pyroantimonate as a fixative. The results indicated that a correlation exists between the inorganic cations comprising the pyroantimonate-precipitable fraction and the RNA synthetic activity. During meiotic prophase an accumulation of cation-antimonate precipitates occurs dispersed through the middle pachytene nuclei, the stage in which RNA synthesis reaches a maximum. At other stages (zygotene to diplotene), where RNA synthesis falls to a low level, that pattern is not seen; cation-antimonate deposits are restricted to a few masses in areas apparently free of chromatin. The condensed sex chromosomes, the heterochromatin of the "basal knobs," the axial elements, and the synaptonemal complexes are devoid of antimonate deposits during the meiotic prophase. The Sertoli cells, active in RNA synthesis in both nucleoplasm and nucleolus, show cation-antimonate deposits at these sites. In the nucleoplasm some "patches" of precipitates appear coincident with clusters of interchromatin granules; in the nucleolus the inorganic cations are mainly located in the fibrillar and/or amorphous areas, whereas relatively few are shown by the granular component. The condensed chromatin bodies associated with the nucleolus were always free of antimonate precipitates. It is suggested that the observed sites of inorganic cation accumulation within the nucleus may at least partially indicate the presence of RNA polymerases, the activity of which is dependent on divalent cations.


1969 ◽  
Vol 41 (2) ◽  
pp. 401-423 ◽  
Author(s):  
Marianne J. Legato ◽  
Glenn A. Langer

This study was designed to investigate the proposition that subcellular calcium is sequestered in specific sites in mammalian myocardium. 29 functioning dog papillary muscles were fixed through the intact vascular supply by means of osmium tetroxide containing a 2% concentration of potassium pyroantimonate (K2H2Sb2O7·4H2O). Tissue examined in the electron microscope showed a consistent and reproducible localization of the electron-opaque pyroantimonate salts of sodium and calcium to distinct sites in the tissue. Sodium pyroantimonate was found exclusively in the extracellular space and clustered at the sarcolemmal membrane. Calcium pyroantimonate, on the other hand, identified primarily by its susceptibility to removal by chelation with EGTA and EDTA, was consistently found densely concentrated in the lateral sacs of the sarcoplasmic reticulum and over the sarcomeric I bands. M zones were virtually free of precipitate. The implications of these findings with respect to various parameters of muscle function are discussed.


2012 ◽  
Vol 15 (4) ◽  
pp. 711-720 ◽  
Author(s):  
M. Gajęcka ◽  
B. Przybylska-Gornowicz

Abstract The objective of this study was to determine the effect of 42-day ZEN intoxication on the presence of Ca2+ in selected ovarian cells from beagle bitches, using the potassium pyroantimonate (PPA) method. Samples were collected from 30 clinically healthy, pre-pubertal, genetically homogeneous animals. The bitches were divided into three groups of 10 animals each: experimental group I - 50 μg ZEN/kg BW (100% NOAEL) administered once daily per os; experimental group II - 75 μg ZEN/kg BW (150% NOAEL) administered once daily per os; control group - placebo containing no ZEN administered per os. An electron microscopic analysis revealed that cells died due to apoptosis, depending on the ZEN dose and the type of cells exposed to intoxication. Lower ZEN doses led to apoptosis-like changes in the cells. Cell death was a consequence of excess Ca2+ accumulation in the mitochondria, followed by cell dysfunction and a decrease in or the absence of mitochondrial metabolic activity in oocytes, follicle cells and interstitial cells in experimental bitches.


1985 ◽  
Vol 33 (6) ◽  
pp. 595-603 ◽  
Author(s):  
D M Lyaruu ◽  
A L Bronckers ◽  
E H Burger ◽  
J H Wöltgens

Potassium pyroantimonate-osmium tetroxide cytochemistry has been used to study the distribution of ionic calcium in hamster tooth germs during cell differentiation and during early dentinogenesis and amelogenesis. Before the onset of mineralization, pyroantimonate (PA) reaction product was found in the nucleus of differentiating preameloblasts and preodontoblasts. In the predentin, it was preferentially located along striated collagen fibrils, lying perpendicular to the basal lamina. At the onset of mineralization, a pronounced increase of PA reaction product was evident in the predentin and on the plasma membrane and in mitochondria of both preodontoblasts and preameloblasts opposite the mineralizing mantle dentin. During early enamel mineralization, PA reaction product was present in the "growing" crystal ends, while in the secretory ameloblasts, most of the PA reaction product was localized on the cytoplasmic side of the apical plasma membranes and in mitochondria. When Tomes' processes developed, PA reaction product, both cytoplasmic and membrane bound, was low or absent deep in the processes, but gradually increased toward the apical terminal web. A corresponding gradient of PA reaction product was observed on the opposing enamel crystallites. From this study we conclude that both preodontoblasts and preameloblasts seem to be involved in calcium acquisition necessary for the early stages of mantle dentin mineralization. Tomes' processes seem to regulate the entry of calcium into the enamel mineralization front.


1982 ◽  
Vol 53 (1) ◽  
pp. 37-48 ◽  
Author(s):  
R. Kuroda ◽  
H. Kuroda

In a dumbbell-shaped plasmodium of Physarum polycephalum showing active shuttle streaming Ca was precipitated with potassium pyroantimonate (K[Sb(OH)6]), and the distribution of Ca between the cytoplasm and cellular organelles, especially vacuoles, was examined by electron microscopy. The contracting half-mass, where many empty vacuoles were present, was rich in the small Ca precipitates located in the cytoplasm. The relaxing half-mass, where many Ca-containing vacuoles were present, was poor in the cytoplasmic Ca precipitates. One half-mass of a dumbbell-shaped plasmodium was treated with Ca ionophore, X-537A, and its effect on the motive force for endoplasmic streaming and the distribution of Ca was investigated. The motive force was increased by X-537A, but the period of shuttle streaming was not changed. X-537A also induced a significant increase in the number of the cytoplasmic Ca precipitates in the X-537A-treated contracting half-mass, so that the asymmetry of the distribution of cytoplasmic Ca precipitates was enhanced. A large portion of the vacuoles were empty in the contracting half-mass, and Ca-containing in the relaxing one as in the case of the untreated plasmodium.


Sign in / Sign up

Export Citation Format

Share Document