scholarly journals Effect of Cassava mill effluent on some soil chemical properties and the growth of fluted pumpkin (Telfairia occidentalis Hook F.)

2014 ◽  
Vol 6 (2) ◽  
pp. 320-325 ◽  
Author(s):  
Ehi Robert Orhue ◽  
Enogiomwan Esther Imasuen ◽  
Daniel Enuenweyoi Okunima

In the trials, Cassava mill Effluent was used for fluted pumpkin (Telfairia occidentalis) cultivation in order to verify the influence of the effluent on the growth and some soil chemical properties. In this regard, a completely randomized and randomized complete block designs were used in the greenhouse and field trials respectively with 6 treatments replicated 3 times. In the greenhouse, the following rates of 0, 100, 200, 300, 400 and 500 ml per 5 kg topsoil were used while in the field trial, 0, 40000, 80000, 120000, 160000 and 200000 litres/ha were utilized. The rates used in the field were equivalent to those of greenhouse. In both trials, the cassava mill effluent was applied 2 weeks prior to transplanting the seedlings. Results indicated that the cassava mill effluent significantly (P < 0.05) increased soil pH, organic carbon, N, P, K, Ca, Mg, Na, Fe, Cu and Zn whereas the exchangeable acidity decreased significantly (P < 0.05) with corresponding increase in cassava mill effluent treatments. Except N and Na, which declined with corresponding increase in the cassava mill effluent treatments, an improved P, K, Mg, Ca, Fe, Cu and Zn components was achieved in cassava mill effluent polluted plants compared to control. The plant height, significantly (P < 0.05) decreased with increased cassava mill effluent treatment in the greenhouse trial while in the field trial, 120000 litres/ha was significantly (P < 0.05) higher than other treatments. In the greenhouse trial, significantly (P < 0.05) higher number of leaves was attained in 100 ml treatment compared to other treatments whereas in the field trial, the 120000 and 200000 litres/ha were significantly (P < 0.05) higher compared to other treatments

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Ali Maru ◽  
Osumanu Ahmed Haruna ◽  
Walter Charles Primus

The excessive use of nitrogen (N) fertilizers in sustaining high rice yields due to N dynamics in tropical acid soils not only is economically unsustainable but also causes environmental pollution. The objective of this study was to coapply biochar and urea to improve soil chemical properties and productivity of rice. Biochar (5 t ha−1) and different rates of urea (100%, 75%, 50%, 25%, and 0% of recommended N application) were evaluated in both pot and field trials. Selected soil chemical properties, rice plants growth variables, nutrient use efficiency, and yield were determined using standard procedures. Coapplication of biochar with 100% and 75% urea recommendation rates significantly increased nutrients availability (especially P and K) and their use efficiency in both pot and field trials. These treatments also significantly increased rice growth variables and grain yield. Coapplication of biochar and urea application at 75% of the recommended rate can be used to improve soil chemical properties and productivity and reduce urea use by 25%.


1998 ◽  
Vol 34 (3) ◽  
pp. 259-276 ◽  
Author(s):  
J. M. POWELL ◽  
F. N. IKPE ◽  
Z. C. SOMDA ◽  
S. FERNÁNDEZ-RIVERA

Most farming systems in semi-arid West Africa rely on organic matter recycling for maintaining soil fertility. The cycling of biomass through ruminant livestock into dung (faeces) and urine that fertilize the soil has long been an important factor in t he nutrient cycling processes of these integrated, mixed crop/livestock systems. While dung greatly improves soil properties and crop yields, little is known about the effects of urine on soil chemical properties and the impact of dung and urine on crop p roduction. An average voiding of sheep urine applied to a sandy, siliceous soil in the Republic of Niger increased soil pH, available phosphorus and ammonium levels dramatically in the upper 10–15 cm of soil, especially during the first week following application. Losses of applied urine nitrogen via volatilization were in the order of 30–50%. A four-year field trial was conducted on the same soil type to evaluate the effects on pearl millet and weed yields of corralling cattle o r sheep overnight on cropland (dung plus urine application) for one, two or three nights, every one, two or three years versus the effects of applying only dung at the same application rates and intervals achieved with corralling. The main results of this field trial were that (1) urine had large positive effects on millet grain, threshed panicle, leaf, stem and weed yields, (2) sheep dung was more effective than cattle dung in increasing yield, (3) two nights of dung application was adequate for maximum yield and (4) the positive effects of dung and urine on yield lasted two to three cropping seasons after application.


2011 ◽  
Vol 3 (2) ◽  
pp. 189-199
Author(s):  
Ehi Robert Orhue ◽  
Uzu Frank

The present study was conducted to determine the influence of Cr on some agronomic characters of Telfairia occidentalis nutrient content and uptake and some chemical properties of soil. In the greenhouse trial, chromium nitrate [Cr(N03)2] was applied at rates of 0, 50, 100 and 200 mg per 5 kg sieved and air-dried soil obtained from a depth of 0-15cm. The rates of 0, 20, 40 and 80 kgha-1 equivalent to pot rates were used in the field trial. Results showed that the soil used was texturally sandy loam and an ultisol as revealed by its low base saturation. In the greenhouse the soil pH, N, K, Mg, Ca, Na, Fe, Mn, Zn, free Fe and Al oxides, organic carbon, effective cation exchange capacity, exchangeable acidity, amorphous Fe and Al oxides content of the soil decreased inconsistently at various levels of Cr treatments except available P, which appreciated inconsistently. With the exception of soil pH, organic carbon, available P and amorphous Fe oxide, which increased at various levels of Cr concentrations, all other soil chemical properties determined, declined inconsistently in the field trial. The amorphousAl oxide however remained stable in the field trial. The Cr content of the soil increased with the levels of Cr treatments when compared with the control in the trials. The N, P, K, Mg, Ca, Na, Fe, Mn and Zn content of shoot and root as well as their uptake also decreased consistently with increasing Cr treatments. In addition, the Cr content as well as uptake by the shoot and root also increased consistently with increased rates of the Cr applied in the trials with the minimum levels of the Cr content and uptake recorded at the control treatments. As the Cr concentration increased, the crude protein content of both shoot and root consistently decreased with highest crude protein content recorded in the shoot compared to the root. A decrease in the dry matter yield with increased Cr treatments in shoot and root was recorded in the trials. Results also showed that the Cr influenced the height, collar girth, leaf area and number of leaves with control treatments higher than other treatments at final harvest.


2011 ◽  
Vol 3 (2) ◽  
pp. 159-165
Author(s):  
Ehi Robert Orhue ◽  
Akhere Mathew Ekhomun

The greenhouse and field trials were conducted at the University of Benin, Benin City, Nigeria to determine the influence of Cd on the growth, dry matter yield and nutrient uptake by fluted pumpkin (Telfairia occidentalis). Four levels of Cd(NO3)2 treatments namely 0, 50, 100, 200 mg per 5 kg soil equivalent to 0, 20, 40, 80 kgha-1 were used in the greenhouse and field trials respectively. The completely randomized and randomized complete block experimental designs were used in the greenhouse and field trials respectively. Results indicated that increased application of Cd decreased the height, number of leaves, leaf area, stem girth and dry matter yield of the plant. The nutrients content and uptake also decreased with the increase in the supply of the Cd. Higher Cd concentrations and uptake were recorded in the root of the treated plants when compared to the control treatments. The nutrients and oxides components of the soil decreased at various levels of the Cd application. These decrease in soil nutrient components were however not consistent. However, the Cd content of the soil increased with increased Cd treatments.


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2091
Author(s):  
Rimsha Khan ◽  
Aitazaz A. Farooque ◽  
Helen Carolyn Peach Brown ◽  
Qamar U. Zaman ◽  
Bishnu Acharya ◽  
...  

Soil chemical properties can be improved by incorporating crop residues in soil and letting it decompose. This study explored the use of incorporating residues of cover crops for improvements in soil chemical properties including soil organic matter (SOM), soil pH, and the selected soil macro- and micronutrients in greenhouse and field trials. Factors of interest included (i) cover crops and their combinations and (ii) methods of crop termination and incorporation in soil (disc, mow + disc, glyphosate, roller crimper). The greenhouse trial showed up to a 20% higher amount of SOM accumulated in soils incorporated with crop residues. Buckwheat (3.12%) and phacelia (3.12%) produced significantly different and larger SOM than that of the control treatment that received no crop residues (p ≤ 0.05). The soil pH of the brown mustard treatment was also significantly affected by the experimental treatments (p ≤ 0.05). The incorporation of crop residues did not affect soil phosphorous (P) or potassium (K) concentrations, except for brown mustard, with significantly higher values of P and K than the control treatment. Calcium (Ca) was significantly higher in the soil of phacelia + pea treatment (p ≤ 0.05). Buckwheat + pea produced a higher concentration of Ca (1028 mg/kg) followed by buckwheat alone (1006 mg/kg). Analysis of variance (ANOVA) calculated on the results of the field trial showed that the mix treatment that had a mixture of four cover crops significantly increased the SOM content. Buckwheat produced the highest (2.95%) SOM, then brown mustard and timothy. This study concludes that, irrespective of the tillage incorporation methods, the residues from cover crops are a potential source of improvement in soil health, and this practice may promote sustainable agriculture in conditions similar to those in this study.


2011 ◽  
Vol 3 (1) ◽  
pp. 10-19
Author(s):  
Ehi Robert Orhue ◽  
Uzu Frank

Pot and field trials were conducted at the Faculty of Agriculture, University of Benin to determine the influence of Pb on some agronomic characters of Telfairia occidentalis and some chemical properties of soil. Completely randomized and randomized completely block designs were used in greenhouse and field trials respectively. In the greenhouse trial, lead nitrate (Pb(N03)2 ) was applied at rates of 0, 50, 100 and 200 mg per 5 kg sieved and air-dried soil obtained from a depth of 0-15 cm. The pot rates equivalent to 0, 20, 40 and 80 kgha-1 wereused in the field trial. Results indicated that the soil used was texturally sandy loam and an ultisol as demonstrated by its low base saturation. The pH, organic carbon, Effective Cation Exchange Capacity (ECEC), Exchangeable acidity, N, K, Mg, Ca, Na, Fe, Mn, Zn, free Fe and Al oxides, Amorphous Fe and Al oxides content of the soil decreased inconsistently. The organic carbon however increased in the field while the available P appreciated in the entire trials. The Pb content of the soil increased with the levels of Pb treatments when compared with the control throughout the trials. The N, P, K, Mg, Ca, Na, Fe, Mn and Zn content of shoot and root as well as their uptake also decreased consistently with increasing Pb treatments. In addition, the Pb content as well as uptake by the shoot and root also increased consistently with increased rates of the Pb applied in the trials with the minimum levels of the Pb content and uptake recorded at the control treatments. The crude protein content decreased with increased heavy metal treatments in both root and shoot with the control having the highest crude protein content. The highest crude protein percentage was recorded in the shoot compared to the root. A decrease in the dry matter yield with increased Pb treatments in shoot and root was recorded in the trials. Results also showed that the Pb influenced the height, collar girth, leaf area and number of leaves with control treatments higher than other treatments at final harvest. The manifestation of anthocyanin pigmentation in 200 mg Pb and 80 kg Pb ha-1 treatments revealed the negative influence of the Pb on the phosphorus uptake by Telfaria occidentalis.


Sign in / Sign up

Export Citation Format

Share Document